
Network
Performance Analysis

Using the J Programming Language

Alan Holt

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

13

N
etw

ork Perform
an

ce A
n

alysis
H

olt

1

Network Performance Analysis

Alan Holt

Network Performance
Analysis

Using the J Programming Language

123

Alan Holt, PhD
agholt@gmail.com

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007936013

Printed on acid-free paper

ISBN 978-1-84628-822-7 e-ISBN 978-1-84628-823-4

c© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media

springer.com

Chi and Emily

Preface

The J programming laguage is rich in mathematical functionality and ideally suited
to analytical computing methods. It is, however, a somewhat terse language and not
entirely intuitive at first, particularly if one is used to more conventional program-
ming languages such as C, Pascal or Java. J functions (called verbs) are denoted by
punctuation symbols. New functions can be developed by combining sequences of
existing verbs into phrases. The compositional rules of J govern how the functions
are combined and thus how they are applied to data objects. Conjunctions provide the
programmer with additional control over the behavior of verbs and the composition
of phrases.

The J programming language was conceived by Kenneth Iverson (also the author of
APL) and Roger Hoi in 1991 (note that J is not in anyway related to Java). It is an
interpretive language written in C. It is, therefore, highly portable and can run on
a number of architectures and operating systems. Architectures currently supported
are Intel, PowerPC and ARM, as well as 64 bit AMD. There are runtime versions of
J for a number of Unix variants, such as Linux, Mac OS X, and Solaris, for example.
Windows and Windows CE are also supported.

The last platform, Windows CE, is of particular interest. If, like the author, you have
tried a number of scientific calculators, you may have found them packed with func-
tionality but cumbersome to use. PDAs (personal digital assistants), on the other
hand, have better user interfaces. They are also quite powerful and have relatively
high-resolution colour graphics. However, in terms of mathematical features, they
are somewhat limited and are little more than electronic organisers. For an engineer
then, J is the “killer app” for the PDA. A PDA (running Windows CE) becomes the
ultimate scientific calculator. In this environment, a terse language like J is a benefit,
as the input method is typically limited to a touch screen with a stylus. Programming
in more verbose languages, like C or Java makes the PDA impractical.

In this book, we use the J programming langauge as a tool for carrying out perfor-
mance analysis of packet data networks. All the examples in this book were devel-
oped on the J.504 version of the interpreter. There are many excellent books on the

VIII Preface

market on network performance analysis. However, they tend to be heavy in math-
ematical rigour. Rather than covering these topics in terms of proofs and theorms
(which the other books do so well anyway), it is the aim of this book to introduce
concepts and principles of network performance analysis by example, using J.

J is available for download from www.jsoftware.com, where installation instru-
ctions are provided as well as online documentation. There are also a number of
forums that you may subscribe to that will give you access to the wealth of experience
and knowledge of the J community.

Acknowledgments

The author would like to thank the following people for the valuable contribution
they made to this book: Dr Lin-Yi Chou (University of Waikato), Dr Sue Casson
(Leeds University), Dr Adrian Davies, Michael Dewsnip (DL Consulting), Dr Chi-
Yu Huang (DL Consulting), Zhiwei Liu (University of Waikato), and Prof. John
Monk (Open University). Thanks also to Catherine Brett of Spinger for guiding me
through this process.

I especially want to thank my wife for all her love and encouragement throughout
this period. I could not have undertaken this project without her support.

Alan Holt

Contents

Preface . VII

List of Figures . XIII

List of Tables . XV

1 Introduction . 1

1.1 Quality of Service . 3

1.2 Network Utilisation . 5

1.3 Traffic Management . 10

1.4 Queue Analysis . 12

1.5 Summary . 17

2 Fundamentals of the J Programming Language 19

2.1 Data Objects . 19

2.2 J Verbs . 21

2.3 Monadic and Dyadic functions . 22

2.4 Positional Parameters . 23

2.5 Adverbs . 27

2.6 Rank, Shape and Arrays . 28

2.7 Summary . 32

X Contents

3 Programming in J . 33

3.1 Verb Composition . 35

3.1.1 Hooks . 35

3.1.2 Forks . 36

3.1.3 Longer Phrases . 36

3.1.4 Conjunctions . 37

3.2 Examples . 41

3.2.1 More z-transforms . 42

3.2.2 Shannon’s Result . 43

3.2.3 Euler’s Formula . 43

3.2.4 Information Entropy . 44

3.3 Good Programming Practice . 45

3.3.1 Locales . 47

3.3.2 Explicit Programming . 48

3.4 Scripts . 49

3.5 Summary . 50

4 Network Calculus . 51

4.1 Characterising Traffic Flows . 51

4.2 Min-Plus Algebra . 54

4.3 Mathematical Background . 58

4.3.1 Wide-Sense Increasing . 59

4.3.2 Types of Wide-Sense Increasing Functions 59

4.3.3 Subadditive Functions . 62

4.3.4 Subadditive Closure . 63

4.3.5 Concavity and Convexity . 64

4.3.6 Star Shaped Functions . 65

4.4 Arrival Curves . 66

4.5 Service Curves . 71

4.5.1 Concatenation . 71

4.5.2 Performance Bounds . 72

4.6 Streaming Video Example . 74

4.7 Effective Bandwidth and Equivalent Capacity 78

4.8 Summary . 81

Contents XI

5 Stochastic Processes and Statistical Methods . 83

5.1 Random Number Generators . 83

5.2 Statistical Functions . 87

5.2.1 Autocovariance and Autocorrelation . 88

5.2.2 Variance Time Plot . 90

5.2.3 Fourier Transform and Power Spectrum 92

5.3 Stochastic Processes . 95

5.3.1 Autoregressive Processes . 96

5.3.2 Moving Average Processes . 99

5.3.3 Processes with Long-Memory . 100

5.4 Queue Analysis . 104

5.5 Summary . 108

6 Traffic Modeling and Simulation . 109

6.1 On/Off Traffic Sources . 109

6.2 Binomial Distribution . 110

6.3 Markov Models . 112

6.4 Effective Bandwidth . 115

6.5 Discrete On/Off Source Models . 120

6.6 Summary . 124

7 Chaotic Maps . 125

7.1 Analysing Chaotic Behaviour . 125

7.2 Chaotic Maps for Traffic Sources . 134

7.2.1 Bernoulli Shift . 136

7.2.2 Double Intermittency Map . 140

7.2.3 Queue Dynamics . 144

7.3 Summary . 145

8 ATM Quality of Service . 147

8.1 Generic Cell Rate Algorithm . 148

8.2 Virtual Scheduling Algorithm and Leaky Bucket Algorithm 148

8.2.1 Jitter . 152

8.3 Dual Virtual Scheduling Algorithm and Dual Leaky Bucket 153

8.4 Analysing Burst Tolerance . 155

8.5 Summary . 161

XII Contents

9 Congestion Control . 163

9.1 A Simple Congestion Control Algorithm . 164

9.2 Binomial Congestion Control Algorithms . 166

9.2.1 Analysis . 171

9.3 Model of TCP Congestion Control . 176

9.3.1 Analysis . 179

9.4 Summary . 181

Scripts . 183

A.1 Scripts from Chapter 3 . 183

A.2 Scripts from Chapter 4 . 185

A.3 Scripts from Chapter 5 . 187

A.4 Scripts from Chapter 6 . 193

A.5 Scripts from Chapter 7 . 196

A.6 Scripts from Chapter 8 . 198

A.7 Scripts from Chapter 9 . 200

Abbreviations . 205

References . 207

Index . 211

List of Figures

1.1 Maximum achievable throughput for slotted Aloha 8

1.2 Measured network traffic at various time scales 9

4.1 Wide-sense increasing functions . 62

4.2 Two CBR links in serial . 68

4.3 Traffic flow shaped by a g-regulator . 69

4.4 Traffic flow shaped by a g-clipper . 70

4.5 Arrival curve γ3,3 and service curve β6,3 . 73

4.6 Output bound f5 � g5 . 75

4.7 Video frame transmission curve . 78

4.8 Effective bandwidth of A1 . 79

4.9 Effective bandwidth of f2 = γ3,1 . 80

5.1 Autocorrelation coefficient . 91

5.2 Variance time plot . 94

5.3 Spectral density of an iid random variable (white noise) 95

5.4 Using a moving average for smoothing . 99

5.5 Time series for an FARIMA(0,0.3,0) process . 105

5.6 Queue analysis for lrd-ss and srd traffic . 108

6.1 Probability distribution of the aggregate of 20 on/off flows 113

6.2 Discrete time on/off source model . 114

6.3 Backlog for 20 on/off sources . 116

6.4 Autocorrelation coefficients of queue length . 117

XIV List of Figures

6.5 Effective bandwidth of a Poisson process . 118

6.6 The queue dynamics of a srd and lrd-ss traffic processes 123

7.1 The trajectory of the logistic map in Equation (7.2) 127

7.2 Plot of x(n + 1) against x(n) for the logistic map in Equation (7.2) . 128

7.3 Parabolic curves for the logistic map in Equation (7.3) 129

7.4 The trajectories for a = 0.4, 0.7, 0.8, 0.88 . 130

7.5 Three trajectories for x(0) = 0.1, 0.4 and 0.7 . 131

7.6 Two logistic map trajectories and the difference between them 132

7.7 Lyaponov exponent for the logistic map in Equation (7.3) 135

7.8 Bernoulli shift map . 136

7.9 First 50 iterations of x(n) for the Bernoulli shift map 138

7.10 Autocorrelation and variance-time plot for a Bernoulli shift map 139

7.11 Bernoulli shift map . 141

7.12 Double intermittency chaotic map . 141

7.13 First 50 iterations of x(n) for a Double intermittency chaotic map . . . 143

7.14 Autocorrelation cofficient and variance-time plot for a Double
intermittency chaotic map . 144

7.15 Backlog for Bernoulli shift and double intermittency map traffic 146

8.1 Virtual scheduling algorithm . 149

8.2 Leaky-bucket algorithm . 151

8.3 Dual VSA . 153

8.4 Dual leaky bucket . 156

8.5 Continuous On/Off source model . 158

9.1 Congestion window of three flows sharing a communications link . . . 167

9.2 Ten AIMD flows . 174

9.3 Aggregate AIMD flow . 175

9.4 Aggregate MIMD flow . 176

9.5 Aggregate AIAD flow . 177

9.6 The transition from the slow-start to congestion avoidance 180

9.7 Aggregate TCP flows . 181

List of Tables

2.1 J versus mathematical terms . 21

9.1 Binomial congestion control algorithms . 167

9.2 J terms and associated mathematical terms . 169

1

Introduction

For reasons of tractibility, classical queuing theory assumes that the properties of net-
work traffic (arrival rates, service times) include the Markovian property. While the
Markovian assumption is valid for telephony networks, it has been widely reported
that, for data networks, traffic is fractal in nature [6, 13, 16, 37]. One way to represent
a traffic flow is as a stochastic process. Modelling traffic as Markovian stochastic
processes is attractive because flows can be characterised by only a small number
of parameters. Models of non-Markovian processes, however, are more complex and
analytical results are difficult to derive. Markovian traffic can be clearly distinguished
from Internet traffic patterns which exhibit properties of long-range dependence and
self-similarity. That is, traffic is bursty over a wide range of time scales. Backlog
and delay predictions are frequently underestimated if the Markovian property is
assumed when traffic is actually long-range dependent (and self-similar) [16, 28].

A number of methods for generating fractal-like traffic processes have been put for-
ward. Examples include Fractional ARIMA processes, Fractional Brownian motion,
chaotic maps and the superposition of heavy-tailed on/off sources. Network perfor-
mance can then be investigated using simulation techniques. Some of these fractal
traffic generating techniques are described in this book. We use J to simulate network
systems and analyse their performance under certain traffic conditions.

An alternative approach to simulation is network calculus. Network calculus is a
recent development where the exact properties of flows are unknown. The mathe-
matical foundations are based upon min-plus algebra, whereby the addition and mul-
tiplication operators of conventional algebra are exchanged for minimum and plus
operators. Instead of representing a traffic flow as stochastic process, a flow is char-
acterised by an envelope function. Service curves can also be expressed in this way.
Performance bounds can be derived through the application of min-plus algebraic
methods on flow arrival curves and network system service curves.

Another approach is to consider closed-loop methods of modelling networks. Inter-
net transport protocol such TCP (Transmission Control Protocol), and more recently
DCCP (Datagram Congestion Control Protocol [34]), adjust their transmission rates

2 1 Introduction

according to the congestion state of the network [29]. TCP sends data a “window”
at a time. TCP initially probes the network for bandwidth by increasing its window
size each time it receives an acknowledgment. TCP’s transmission rate is regulated
by the acknowledgment round-trip time. In the event of congestion, TCP reduces
its window size (and thus its transmission rate) and begins probing the network for
bandwidth once again. Congestion control algorithms can be modelled as dynamical
feedback systems, and flow patterns are governed by transport protocols reacting to
network events.

The aim of this book is to present network performance analysis techniques that do
not rely on the Markovian assumption. Topics in network performance analysis are
presented with the aid of the J programming language. J is rich in mathematical func-
tionality, which makes it an ideal tool for analytical methods. Throughout the book
a practical approach is favoured. Functions in J are developed in order to demon-
strate mathematical concepts, this enables the reader to explore the principles behind
network performance analysis.

The topics covered in this book are motivated by the author’s own research and in-
dustrial experience. The book outline is as follows. Chapters 2 and 3 provide an
introduction to the J programming language. Chapter 2 introduces the basic con-
cepts such as the data types and built-in J functions. Chapter 3 covers more advanced
topics, where the focus is programming in J.

Network calculus is introduced in Chapter 4. We demonstrate how arrival and ser-
vice curves can be expressed as J functions. We show how to derive upper bounds for
backlog, delay and output flow. Effective bandwidth and equivalent capacity tech-
niques are introduced as a means of deriving the network resource requirements for
deterministic QoS bounds.

Chapter 5 focuses on statistical analysis and stochastic processes. The concepts of
short-range and long-range dependence are introduced and we implement models
for generating time series with these properties. We introduce Autoregressive (AR)
and Moving Average (MA) models for generating short-range dependent time se-
ries. Fractional Autoregressive Integrated Moving Average (FARIMA) models are
presented for generating time series with long-range dependence and self-similarity.

In Chapters 6 and 7, we show how to simulate traffic with both short-range and
long-range dependence properties. In Chapter 6, we simulate traffic with discrete
on/off models using various random number generators to generate traffic with the
desired correlation properties. In Chapter 7, we show how chaotic maps can be used
to generate simulated traffic.

ATM QoS is covered in Chapter 8. Leaky bucket and virtual scheduling algorithms
are developed in J. We show how cell conformance can be analysed using these
algorithms by running them on simulated traffic from continuous on/off models.

Chapter 9 examines Internet congestion control. We use J to build binomial conges-
tion control algorithms and explore the parameters that govern congestion window
increase and decrease.

1.1 Quality of Service 3

1.1 Quality of Service

The Internet was principally designed to offer a best-effort service [12]. While the
network makes a sincere attempt to transmit packets, there are no guarantees with
regard to reliable or timely delivery. Packets may be delayed, delivered out of order
or dropped. The end-to-end protocols (such as TCP) are given the responsibility of
recovering from these events. Packets incur delays during transmission due to link
speeds, and propagation delays. Delays are also incurred by packets waiting in buffer
queues. Memory buffers are used to resolve contention issues when two (or more)
packets arrive simultaneously at a communications link. A packet’s waiting time is
determined by the number of packets that are scheduled ahead of it; thus waiting
times increase with traffic volume. Furthermore, if traffic volumes are excessive,
contention for buffer memory arises, which is resolved by dropping packets.

Traffic management methods (and associated policies) can help to alleviate the trade-
off between QoS and network optimality. Traffic management is a complex technical
issue, but it is also an economical, political and ethical one. Like any limited re-
source, the allocation of network capacity can be somewhat controversial. Traffic
management policies are selected either to implement a neutral network, or a dif-
ferentiated one. In a neutral network, there is parity between users and services in
terms of how the network treats their packets. A neutral network however, does not
necessarily support fairness. Due to the flat-rate pricing policy of the Internet, heavy
users do not incur any additional financial cost over light users. Yet the burden of
congestion is borne by all.

In a differentiated network, there is discrimination between users and/or services.
The network provider controls the allocation of resources, electing to give some
users a better than best-effort service (and others a less than best-effort). Better than
best-effort services are covered extensively in the literature ([22, 73], for example).
Certain classes of user require either priority allocation or an assurance of a mini-
mum allocation of resources during periods of congestion. Resources are allocated
according to the particular QoS requirements of the user’s application. The aim is
either to guarantee or at least optimise QoS metrics, such as delay, jitter, throughput
or loss.

Less than best-effort (LBE), services are not so clearly defined. Typically, best-effort
is considered the lowest level of service [23]; that is, high-priority users are allo-
cated resources according to their needs, and any remaining resources are allocated
to lower-priority users. One may argue, however, that if a particular set of users is re-
ceiving a preferential service relative to another, then any “best-effort” commitment
to the low-priority users is not being met. The service they are receiving, therefore,
is almost certainly less than best-effort.

Nevertheless, the literature maintains that a best-effort service can be supported de-
spite the differentiation in flows and preferential resource allocation. Furthermore,
low-cost LBE services may be offered alongside best-effort and high-priority ser-
vices to users of applications that are tolerant to high loss rates, delay and jitter

4 1 Introduction

[19, 25]. During periods of congestion, LBE packets are delayed or dropped in pref-
erence to best-effort or high-priority traffic. Applications with LBE delivery can
make use of off-peak periods when network resources are underutilised. This en-
ables network providers to use otherwise spare capacity, without affecting best-effort
or higher priority traffic.

LBE services however, extend beyond low-cost service offerings by providers as a
means of selling available capacity on under-utilised links. There have been cases
where network providers have attempted to “discourage” the use of certain services
over their network. Voice over IP (VoIP) is a typical example. There have been
reports of provider discrimination against VoIP services. At the most basic level,
providers simply block IP ports such that VoIP traffic cannot pass between the sender
and receiver. A more subtle form of discouraging VoIP applications is delay packets
such that the QoS is degraded beyond a usable level [50]. VoIP users may be unaware
they are being discriminated against, believing that the low voice quality is merely
a by-product of a best-effort service, when in actual fact the provider is inflicting a
less-than best-effort service on them.

Less-than best-effort services can also arise from network provider business prac-
tices. The Internet is no longer a network formed through the “cooperative anarchy”
[65] of government agencies and academic institutions. The infrastructure is divided
amongst many competitive Internet Service Providers (ISPs). Tier 2 ISPs “buy” rout-
ing tables wholesale from transit providers; thus traffic is exchanged between ISPs
via transit networks. Rival ISPs, however, may elect to cooperate and exchange traffic
through a mutual peering arrangement [48]. The benefits of peering are (potentially)
two-fold. Firstly, ISPs in a peering arrangement reduce their transit costs. Secondly,
by eliminating the transit hop and taking a more direct route, traffic latency is re-
duced. A peering arrangement between two ISPs may be attractive to one ISP but
not the other. Without the consent of both parties, peering will not occur. This has
given rise to a number of dubious business practices, whereby one ISP tries to en-
courage other to peer with it. For example, if ISP B receives traffic from ISP A
through some prior peering arrangement with another ISP, then ISP A could, using
policy routing, forward its traffic to ISP B through a transit provider. Furthermore,
ISP A may compound ISP B’s transit costs by “replaying” traffic using a traffic gen-
erator [49]. Such practices do not constitute a sincere attempt to deliver packets, and
thus packet delivery is not best-effort.

Textbooks describe the Internet Protocol as a best-effort packet delivery mechanism
[12] and Internet commentators talk of “retaining” a neutral network [9]. According
to Sandvig, however, “the Internet isn’t neutral now” [60]. Nor has it been for a long
time. As the Internet grew in the 1990s, it suffered from the tragedy of the commons
[46] and was subject to “overgrazing.” Furthermore, the Internet carries content that
some find undesirable. Providers adopt differentiated traffic management policies in
order to address these issues. Consider the following scenarios:

1.2 Network Utilisation 5

• According to reports, 75 to 95 percent [18, 74] of electronic mail is unsolicited
(SPAM). Providers go to a great deal of trouble trying to distinguish SPAM from
legitimate e-mail so that it can be purged from the network.

• Users vary considerably when it comes to their consumption of network re-
sources. In order to prevent a small number of heavy users causing congestion,
some ISPs impose caps on their subscribers. Subscribers that exceed their caps
are either blocked or charged extra.

• The Internet has undergone a revolution in the People’s Republic of China, yet it
is a prime example of how “the net can be developed and strangled all at once”
[67]. Content providers, in accordance with legislation, cooperate with the Chi-
nese government to censor traffic that carries information deemed to be “sensi-
tive.”

Discriminatory practices on the Internet are a reality; it is merely a question of which
practices one finds acceptable. As Sandvig points out, network neutrality is not the
issue, it is “who discriminates and for what purpose” [60]. Furthermore it may not
be appropriate to view QoS in terms of the service levels centred around best-effort,
but rather as varying degrees of the preferential allocation of resources.

As the amount of real-time traffic on the Internet increases, such as voice and video,
it is essential that support for QoS is provided. First and foremost, QoS is about ca-
pacity planning. Network resources need to meet traffic demands. Users, however,
have a sporadic need for resources, and peak demand is very rarely sustained for long
periods. If the network capacity level is set to the peak demand, then the network will
be idle for long periods. Fortunately, many applications are not entirely intolerant to
some delay or loss. The network, therefore, does not have to be excessively overpro-
visioned. Nevertheless, it is not easy, given the stochastic nature of network traffic,
to balance QoS requirements and resource efficiency.

1.2 Network Utilisation

In this section, we discuss the effects of network utilisation on performance. We take
the opportunity to introduce J and use it to explore some of the concepts presented.
Network utilisation is the ratio of demand over capacity. The load on a network link
cannot exceed 100 percent of capacity. It is possible, however, for the offered load to
exceed this figure, in that case the available buffer memory temporarily stores excess
traffic. Excessive backlog, and thus delay, can be avoided by limiting the level of
network utilisation. This is achieved by monitoring the traffic volumes and setting the
capacity relative to the offered load, so that the demand/capacity ratio (utilisation) is
sufficiently low so that the backlog is kept within acceptable bounds. The problem is
finding the utilisation level which yields “acceptable bounds” for the backlog.

A commonly cited rule of thumb for network utilisation is 30 percent [61, 68]. There
appears to be some confusion in some literature between achievable utilisation and

6 1 Introduction

the level of utilisation that can support a given QoS. Passmore conveys the perfor-
mance “limitations” of Ethernet [51]:

shared-media CSMA/CD Ethernet LANs where thirty percent is the effec-
tive utilisation limit.

Ethernet, however, has no such limitation, it is capable of much higher utilisation
levels, as reported in [7]. Furthermore it is fairly straightforward to demonstrate
empirically the utilisation capabilities of Ethernet. One of the origins of this “magic
number” is possibly the (slotted) Aloha wireless protocol, which, due to the
contention mechanism in the system, achieves a maximum throughput of 37 percent.
Here, we carry out an analysis of the throughput of Aloha using J. We also demon-
strate how throughput can be improved using carrier sensing techniques. The through-
put S for slotted Aloha is the function of the offered load G and is given by the
expression [66]:

S = Ge−G (1.1)

The mathematical expression in Equation (1.1) can be implemented by the J com-
mand line:

(*ˆ@-) 0 1 2 3
0 0.367879 0.270671 0.149361

From the example above, the indented line is the J command that is entered by the
user (the J prompt is a three-space indentation). The sequence of characters *ˆ@-
(enclosed in brackets) form a function; in this case they define the relationship be-
tween S and G in Equation (1.1). The list of values that follows is the argument
passed by the function (in this case the argument represents various values of G).
The function is applied to each value in the argument list and outputs a correspond-
ing value of S on the nonindented line below. The symbols ˆ, * and - are arithmetic
operators and represent the exponential function, multiplication and negation respec-
tively. The @ primitive is called a conjunction in J and acts as a sequencing operator.
Without going into detail at this point, think of @ as an apply operator. Thus, the ex-
ponential function is applied to the negated values of the arguments (G). The result
of this operation is then multiplied by the argument values. J composition rules may
not seem intuitive at first, but they will be covered in more detail later. It can be seen
that the throughput reaches a maximum of approximately S ≈ .0.37 for G = 1. For
pure Aloha (nonslotted), the maximum achievable throughput is even lower:

S = Ge−2G (1.2)

Equation (1.2) can be realised by the J expression below:

(*ˆ@-@+:) 0 0.5 1 2 3
0 0.18394 0.135335 0.0366313 0.00743626

1.2 Network Utilisation 7

where +: is the double primitive. Pure Aloha achieves maximum throughput, S ≈
0.18 when the offered load G = 0.5.

Carrier sense multiple access (CSMA) techniques achieve greater efficiency than
Aloha protocols. The fundamental problem with Aloha is that stations send data
whether the carrier is busy or not. Transmitting on a busy channel results in collisions
and, therefore, low throughput levels. Systems that use CSMA “sense” the carrier
before transmitting. If the carrier is idle, then the station transmits; otherwise it backs
off. Here, we analyse the nonpersistent varaiant of CSMA, where the throughput is
given by:

S =
G

1 + G
(1.3)

The J expression for Equation (1.3) can be implemented as:

(%>:) 0 1 2 3
0 0.5 0.666667 0.75

where % and >: are the division and increment operators. We can see from the re-
sults that CSMA yields a higher throughput than Aloha. A nonpersistent CSMA
station in back-off, defers a packet transmission for a random period after a busy
carrier becomes idle. This is to avoid two (or more) stations which have backed off,
from transmitting at the same time (causing a collision). Ethernet is a 1-persistent
CSMA protocol, which does not defer a random amount of time (transmits imme-
diately the carrier becomes idles). While 1-persistent CSMA yields a lower theo-
retical throughput than nonpersistent, Ethernet employs collision detection, which
make higher throughput levels possible. Indeed, Metcalfe and Boggs [47] showed
that (shared-media) Ethernet is capable of sustaining 95 percent utilisation.

The graph in Fig 1.1 shows the throughput curves for slotted Aloha, pure Aloha and
nonperistent CSMA. It is possible to plot graph in J. The plotting functions have to
be loaded:

load ’plot’ NB. load plot functions

The example below shows briefly how to plot a simple graph for the throughput of
CSMA. Note, however, that J’s graphing capabilties is outside the scope of this book.
Refer to the J User Manual for more details on the plot command. For convenience
assign G and S:

G =: 0 1 2 3
S =: (*ˆ@-) G

Ensure that you are running J interpreter as jw rather than jconsole. Then plot S
against G:

plot G;S

8 1 Introduction

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

G (offered load)

S
 (

th
ro

ug
hp

ut
)

pure Aloha

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

G (offered load)

S
 (

th
ro

ug
hp

ut
)

sloted Aloha

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

G (offered load)

S
 (

th
ro

ug
hp

ut
)

nonpersistent CSMA

Fig. 1.1. Maximum achievable throughput for slotted Aloha

When setting utilisation levels, some sense of the time scales to which they apply is
required. At the packet, cell or bit level time resolutions, a communications channel
is either occupied or not occupied it cannot be 30 percent occupied. Only at time res-
olutions greater than the packet (or cell) transmission time can communication links
be fractionally occupied. When we view traffic flows graphically, we do so for a par-
ticular monitoring period and aggregation interval. For the purpose of illustration we
present graphs (in Fig 1.2) showing network traffic for various levels of aggregation
and monitoring periods. This data was taken from the University of Waikato Internet
access link.1

For “calendar” time scales, such as days, weeks and years, traffic loads are non-
stationary. The top-left graph in Fig 1.2 shows the volume of traffic aggregated over
a weekly period for just over a year. Given that this link carries traffic from an aca-
demic institution, you can see two troughs at weeks 4 and 56, which are the Christ-
mas/New Year periods (one year apart). There is also a trough centred around week
32, which is the intersemester break. It can be seen from the top-left graph that there
is a rising trend in time, where the dashed line is a linear least-squares regression of
the weekly traffic volumes.
1 See http://www.wand.net.nz/ for details.

1.2 Network Utilisation 9

0 10 30 50 70

50
10

0
15

0
20

0
25

0
30

0

weekly

weeks

gi
ga

by
te

s

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

1 2 3 4 5 6 7

10
20

30
40

50

daily

weeks

gi
ga

by
te

s

sat sat sat sat sat sat

0 5 10 15 20

10
0

20
0

30
0

40
0

5 minutes

hours

m
eg

ab
yt

es

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

millisecond

seconds

ki
lo

by
te

s

Fig. 1.2. Measured network traffic at various time scales

The top-right graph of Fig 1.2 shows the aggregate daily traffic volumes over a seven-
week period. It shows the periodicity of peaks and troughs for weekday and weekend
traffic respectively. There appears to be anomalously low traffic on Friday of the
second week and Monday of the third week; this corresponds to the Easter bank
holiday. The bottom-right graph (Fig 1.2) shows the five-minute traffic volumes over
one day. The busy and off-peak periods of the day are evident.

Traffic flows on these time scales do not provide much useful insight into queue
dynamics. Rather they are of more interest to the forecaster for the purpose of pre-
dicting future resource requirements or identifying peak and off-peak periods. While
useful for long/medium-term forecasting, the time intervals over which traffic is ag-
gregated are too long and the degree of “smoothing” does not convey any detailed
burst-level behaviour.

The bottom-right graph of Fig 1.2 shows burst-level traffic. The traffic aggregates for
each millisecond are shown for a one-second period. At these time scales, traffic is
(typically) stationary. In traditional telephony, traffic arrival processes smooth expo-
nentially quickly with the increase in aggregation interval. However, traffic patterns
in packet data networks have complex structures, even for periods of stationarity,

10 1 Introduction

when packet arrivals can be highly correlated in time, exhibiting local trends and
cycles [6, 13, 16, 28].

It is unlikely that there is some panacea utilisation figure that meets all capacity
planning requirements and delivers QoS. It is not that the “30 percent” rule is wrong;
in the absence of a better figure, it is as good as any. However, the QoS requirements
will vary according to the users and the applications they run.

1.3 Traffic Management

The network processes packets according to three categories of traffic management
policy:

• forwarding policy

• scheduling policy

• drop policy

If network providers do not apply any active traffic management, the respective for-
warding, scheduling and drop policies are (typically): shortest-path/lowest-cost to
destination, first-come-first-served (FCFS) and drop-from-tail. In a neutral network
environment, all packets, regardless of user and service, are treated the same. Users
compete with each other for resources. The (neutral) network provider does not pro-
tect users from one another, thus greedy users may get a larger proportion of re-
sources, while the pain of congestion is shared equally. Network providers may elect
to employ traffic management policies, such as Fair-Queuing [68] and Random Early
Detect (RED), [20] in order to distribute congestion costs amongst users in propor-
tion to their contribution to it.

Assuming dynamic routing protocols are being used (rather than static routing), the
traditional IP forwarding policy is the shortest-path (or least-cost) to destination.
Upon receiving the packet, each router examines the destination address in the IP
header and looks up the next hop of the corresponding router. The “shortest-path”
depends on the routing protocol. For example, RIP [12] uses number-of-hops as a
routing metric, whereas OSPF [69] uses a cost metric based upon the speed of the
link. Shortest-path routing algorithms can lead to traffic hotspots where links on the
shortest-path are congested, while those that are not, are underutilised.

Load balancing can be achieved by manually manipulating the routing metrics. This,
however, is not an ideal method, as a slight change in operating conditions can sig-
nificantly degrade the stability of the network.2

A better method is to use policy routing [44], whereby packets are routed based
on some attributes of the packet header other than the destination address (source
2 Speaking from bitter experience.

1.3 Traffic Management 11

address or port numbers for example). Packet routes are determined through network
management functions and traffic engineering policies. Policy routing does present a
number of problems. First of all, keeping track of routing policies currently in effect
is administratively difficult. Secondly, each packet incurs extra processing overheads
in determining the flow to which it belongs.

Protocols, such as Multiprotocol Label Switching (MPLS), [2] provide an infrastruc-
ture for the management of predefined paths through the network. MPLS routers at-
tach tags to packets at the edge of the network according to the flow to which they
belong. Flows can be identified by routers in the core with minimal overhead and
packets can be forwarded/scheduled/dropped accordingly.

There are two QoS frameworks for IP networks, namely, Differentiated services
(DiffServ) and Integrated services (IntServ), Differentiated services involve classi-
fying flows at the edge of the DiffServ “cloud” by setting the Differentiated Services
Code-Point (DSCP) in the IP header. Each code-point is associated with some class
of service. Thus, flows mapped to a particular class are forwarded, scheduled and
dropped according to a set of policies that implement the service class. DiffServ
specifies a coarse-grained QoS. Given that the DSCP is only one byte, there is a sig-
nificant restriction on the number of flows that can be represented. QoS, therefore, is
applied to aggregates of flows.

In contrast, IntServ is a fine-grained architecture. Resources are reserved in the
network for individual flows using a signalling protocol, namely, the Resource reSer-
Vation Protocol (RSVP) [73]. The Traffic SPECification (TSPEC) specifies the para-
meters for a leaky-bucket algorithm, such as the token arrival rate and bucket depth.
A flow A = {A(t), t = 0, 1, . . .}, where A(t) is the amount of traffic in the interval
[0, t], and conforms to the traffic specification function α if:

A(t) − A(s) ≤ α(t − s) ∀t ≥ s (1.4)

The TSPEC parameters {M,p, r, b} describe a dual leaky-bucket, where p is the
peak rate, M is the maximum packet size, r is the sustainable rate and b is the burst
tolerance. Thus α(t) = min[pt + M, rt + b].

The Resource SPECification (RSPEC) specifies the resources requirements of the
flow. For a given flow A, the resource function β should yield an output B, such
that:

B(t) − A(s) ≥ β(t − s) ∀t ≥ s (1.5)

In order to support any degree of QoS, something must be known about the nature
of the flows entering the network so that resources can be allocated accordingly.
Consider a single server where packets arrivals are distributed according to a Poisson
distribution with mean rate λ. Furthermore, the number of packets serviced per unit
time is also Poisson distributed with mean rate µ. For a flow of traffic intensity ρ =
λ/µ, the probability that the backlog equals or exceeds n is ρn. For a traffic intensity
of ρ = 0.3, the J expression shows that the backlog diminishes exponentially with n:

12 1 Introduction

0.3ˆ(1 2 3 4 5)
0.3 0.09 0.027 0.0081 0.00243

The average delay for a single M/M/1 queue (where the M means Markovian) is
given by the expression:

E[D] =
1/µ

1 − ρ
(1.6)

If µ = 5, then the delay increases exponentially with traffic intensity ρ:

rho =: 0 0.2 0.4 0.6 0.8 0.9
0.2 % 1-rho

0.2 0.25 0.333333 0.5 1 2

Traffic flows in data networks, however, are not necessarily Poisson. Representing
traffic as a wide-sense increasing envelope curve lends itself to analytical treatment
using network calculus methods. For example, in Equations (1.4) and (1.5), α and
β represent arrival and service curves respectively. Given these two (wide-sense in-
creasing) curves, the upper bound for the backlog can be derived by the network
calculus result: max[α(s) − β(s)], ∀s ≥ 0. Bounds for delay and output traffic can
also be derived using network calculus, as will be discussed in detail in this book.

1.4 Queue Analysis

We complete this chapter by carrying out an analysis of the queue dynamics of a
working conserving link. We show how J can be used to build models of network
systems for the purpose of analysis.

Consider a network traffic source transmitting packets across a communications link
of capacity c. It is assumed that the scheduling policy is FCFS and the buffer queue
is sufficiently large that packets are never dropped. Packets arriving at the interface
of the communications link, form a discrete-time arrival process a = {a(t), t =
0, 1, 2, . . .}. Packets depart from the link at each time interval at a maximum rate c.
If a(t) > c, then packets in excess of c are buffered. In the next time interval t + 1,
the link attempts to clear the backlog q(t) and then forwards any new arrivals a(t+1)
up to the bound c. The backlog is given by the Lindley equation [39] below:

q(t + 1) = (q(t) + a(t + 1) − c)+ (1.7)

where the (x)+ is max(0, x) and q(0) = 0. Here, we show how to implement the
Lindley equation in J, such that we can examine the queuing dynamics of a work con-
serving link. The function requires two parameters; the initial queue size q(0), and
the arrival process over a (finite) sequence of discrete time intervals t = 1, . . . , N .
The J function qnext returns the backlog q(t + 1), and is defined thus:

1.4 Queue Analysis 13

qnext =: 0: >. qprev + anext - c

Note that the terms: 0:, >., anext, +, qprev, - and c in the J expression above are all
functions. J supports a tacit programming style; that is, there is no explicit reference
to arguments. The built-in functions + and - are the addition and subtraction oper-
ators respectively. The larger-of function >., is also a built-in funtions, and returns
the argument with the greater value:

0 >. 1 NB. max
1

Note that the NB. construct denotes a comment. In order to make the qnext more
recognisable, we can define the max function, and redefine qnext, thus:

max =: >. NB. define max function
qnext =: 0: max qprev + anext - c

The function 0:3 is one of J’s constant functions, it returns a value zero, irrespective
of its arguments:

0: 1
0

The function anext (a(t+1)) returns the number of arrivals, qprev returns the backlog
(q(t)) and c is the capacity of the link. These functions will be defined shortly, but
first we must introduce a few more built-in J functions. We cannot make explicit
reference to arguments when programming tacitly, although we can access arguments
through the the functions left [and right] which return the left and right arguments,
respectively:

0 1 2 [3 4 5 NB. return left argument
0 1 2

0 1 2] 3 4 5 NB. return right argument
3 4 5

We use [and] to extract a and q, respectively. However, we need the values of
a(t + 1) and q(t) from these vectors. The term q(t) is relatively straight forward, as
it is the last element of vector q. The tail function {: returns the last element of a
list:

{: 0 1 2 3 4 5
5
3 In addition to 0: there are a number of corresponding integer constant verbs that range

from -9 to 9.

14 1 Introduction

The definition of the function qprev is:

qprev =: {:@]

Extracting the term a(t + 1) is more involved as we have to compute the index of
its position in the list a. We can calculate the value of t + 1 from the length of the
backlog vector. The tally function # gives the length of a list:

0 1 2 3 4 5
6

The value of t + 1 is given by the function:

tnext =: #@]

The function ind decrements (with <:) the value returned by tnext:

ind =: <:@tnext

In J, elements in a list are indexed from zero, hence the need to decrement the value
of tnext. We can now extract the (t + 1)th element from a using the from function {
thus:

anext =: ind { [

Note that we do not need to use the “apply” operator @. This is due to the composition
rules of J. Finally we define the function c. In order to simplify this introductory
example, we use one of the constant functions. For a communications link with a
capacity of one, we use the expression:

c =: 1:

This implementation of the Lindley equation is of somewhat limited usefulness as we
can only analyse link capacities of integer values between one and nine. Ideally, we
should prefer to pass the value of the capacity as parameter (along with a). However,
this would add to the complexity of the final function. Later on in the book we will
present a more flexible implementation of the Lindley equation where c is passed as
a parameter. We can test qnext by passing a(t + 1) and q(t) as arguments:

1 qnext 0 NB. a(t+1) = 1, q(t) = 0
0

0 qnext 1 NB. a(t+1) = 0, q(t) = 1
0

1 qnext 1 NB. a(t+1) = 1, q(t) = 1
0

2 qnext 0 NB. a(t+1) = 2, q(t) = 0
1

1.4 Queue Analysis 15

Excessive delays and dropped packets are a natural outcome of a best-effort service.
Any impact on an individual user’s “quality of service” is caused by other users shar-
ing the same networking resources. A degradation of service is a result of congestion
periods in the network.

Ideally, a network provider would wish to utilise network resources fully. The net-
work user, however, judges performance in terms of response time. High throughput
and low response time are conflicting requirements. This is primarily due to users’
demands for resources being unevenly distributed over time. We can use the Lindley
equation to explore queuing dynamics for various traffic types.

The function qnext computes q(t + 1); however an algorithm is required to perform
the operation over an entire arrival sequence. In J, this is fairly straightforward and
requires none of the conventional iteration constructs, such as for or while loops. Our
algorithm, which we will call lindley, is simply:

lindley =:] , qnext

We pass the arrival sequence as the left argument to lindley and the backlog history
up to time t as the right argument. The backlog history up to time t + 1 is returned.
Consider a determinstic arrival process a1 of rate three:

a1 =: 3 3 3 3 3 3 3 3 3 3

We set the capacity of the link accordingly:

c =: 3:

The first iteration of the lindley function, with backlog history q(0) = 0 is:

a1 lindley 0
0 0

For subsequent iterations, we can use the J power construct ˆ:. Functions can be
iterated N times by raising them to the power N , that is:

f3(x(0)) = f(f(f(x(0))))

Thus we can run the lindley function for ten iterations with the following command-
line:

a1 lindleyˆ:(10) 0
0 0 0 0 0 0 0 0 0 0 0

Not surprisingly, given the deterministic arrival rate a(t) = 3,∀t, the backlog is
zero. Furthermore, the link is fully occupied. It would not be advisable to set the link
capacity any lower, as the backlog would grow, assuming an infinite queue, without
bound:

16 1 Introduction

c =: 2:
a1 lindleyˆ:(10) 0

0 1 2 3 4 5 6 7 8 9 10

Here we examine another, deterministic traffic arrival process. The “average” arrival
rate is still three, however; traffic arrives in bursts of six, followed by a period of
inactivity:

c =: 3: NB. set the capacity back to 3
a2 =: 6 0 6 0 6 0 6 0 6 0
a2 lindleyˆ:(10) 0

0 3 0 3 0 3 0 3 0 3 0

Traffic in excess of the capacity c = 3 is buffered until the next period. The next
time interval constitutes an off-period, so the link is able to clear the backlog. For
deterministic flows, setting the capacity for a given QoS is trivial. For example, if
for a2 we wish to set an upper bound of two for the backlog, then c needs to be set
to 4. Network traffic, however, tends to be stochastic. Given burst of traffic, it is not
so easy to predict that an off (or quiet) period will follow (or even if one will occur
soon). Consider the arrival sequence a3:

a3 =: 3 5 2 4 5 2 3 1 3 2

The J expression below confirms that the average arrival rate of a3 is three:

+/ a3 % 10
3

The +/ is the summation function in J and % is divide. Run the lindley algorithm:

a3 lindleyˆ:(10) 0
0 0 2 1 2 4 3 3 1 1 0

A backlog builds up during persistent bursts (when a(t) > c). Eliminating the back-
log is relatively straightforward. We merely need to set the capacity of the link to the
peak rate of the flow, thus:

max a3
5

c =: 5:
a3 lindleyˆ:(10) 0

0 0 0 0 0 0 0 0 0 0 0

However, a zero backlog appears at a cost of overprovisioning the network. For much
of the time, network resources remain idle. If some backlog can be tolerated and
the network provider can accept some amount of idle capacity, then a compromise
solution may be reached by:

1.5 Summary 17

c =: 4:
a3 lindleyˆ:(10) 0

0 0 1 0 0 1 0 0 0 0 0

1.5 Summary

The purpose of network performance analysis is to investigate how traffic mange-
ment mechanisms deployed in the network affect the allocation of resources amongst
its users and the performance they experience. We can construct models of traffic
management mechanisms and observe how they perform by applying them to some
flow of network traffic. The stochastic nature of network traffic presents the network
capacity planner with a challenge. Clearly, the capacity must lie between the average
and the peak of the traffic flow. Precisely where, is determined by the QoS require-
ments. This book is about addressing these challenges.

2

Fundamentals of the J Programming Language

In this chapter, we present the basic concepts of J. We introduce some of J’s built-in
functions and show how they can be applied to data objects. The pricinpals presented
in this book are supported by examples. The reader therefore, is strongly advised to
download and install a copy of the J interpreter from www.jsoftware.com.

2.1 Data Objects

Here, we give a brief introduction to data objects in J. Data objects come in a number
of forms: scalars, vectors, matrices and higher-dimensional arrays. Scalars are single
numbers (or characters); the examples below show the values assigned to variables
names:

i =: 3 NB. integer
j =: _1 NB. negative integer
x =: 1.5983 NB. real
y =: 22r7 NB. rational
z =: 2j3 NB. complex number
m =: _ NB. infinity
n =: __ NB. negative infinity
v =: 5x2 NB. exponential notation 5 * exp(2)

Note that negative numbers are denoted by an underscore (_) preceding the value
rather than by a hyphen (-). An underscore on its own denotes infinity ∞, and two
underscores denotes negative infinity −∞. Variables are not limited to numerical
values:

c =: ’hello world’

Variables can be evaluated by entering the variable name at the command prompt:

20 2 Fundamentals of the J Programming Language

c
hello world

Scalars are called atoms in J or 0-cells, and vectors are called lists or 1-cells. The
sequence of numbers below is an example of a list and is assigned to a variable
name:

dvc =: 1 1 2 3 5 8 13 21 34 55
dvc

1 1 2 3 5 8 13 21 34 55

The i. verb generates ascending integers from zero n − 1, where n is the value of
the argument. For example:

z1 =: i.10 NB. generate list 0 to 9
z1

0 1 2 3 4 5 6 7 8 9

The associated verb i: generates integers from −n to n, thus:

z2 =: i:5 NB. generate list -5 to 5
z2

_5 _4 _3 _2 _1 0 1 2 3 4 5

Matrices (tables in J) are 2-cell objects. Here is a table of complex numbers:

j =: (i.6) j./ (i.6)
j

0 0j1 0j2 0j3 0j4 0j5
1 1j1 1j2 1j3 1j4 1j5
2 2j1 2j2 2j3 2j4 2j5
3 3j1 3j2 3j3 3j4 3j5
4 4j1 4j2 4j3 4j4 4j5
5 5j1 5j2 5j3 5j4 5j5

Matrices (of ascending integers) can be generated with the i. verb. The example
below shows a 3 × 2 matrix:

i. 2 3 NB. generate a matrix
0 1 2
3 4 5

Higher-dimensional arrays are also possible. The expression below generates an ar-
ray of reciprocals with ascending denominators:

2.2 J Verbs 21

%i. 2 4 3
_ 1 0.5

0.333333 0.25 0.2
0.166667 0.142857 0.125
0.111111 0.1 0.0909091

0.0833333 0.0769231 0.0714286
0.0666667 0.0625 0.0588235
0.0555556 0.0526316 0.05
0.047619 0.0454545 0.0434783

This 3-cell data object is a three-dimensional array with three columns, four rows
and two planes, where the planes are delimited by a blank line.

Scalars/atoms, vector/lists and matrices/tables are just special instances of arrays
with respective ranks zero, one and two. Table 2.1 shows the J terms for data objects
and their mathematical equivalents. Throughout this book, we will use the J and
mathematical terms interchangeably.

J term Mathematical term Dimension Object type
atom scalar 0 0-cell
list vector 1 1-cell
table matrix 2 2-cell
array array n n-cell

Table 2.1. J versus mathematical terms

2.2 J Verbs

In J, functions are called verbs. J has a number of built-in verbs/functions; for exam-
ple, the basic arithmetic operators are: +, -, *, % and ˆ, which are addition, sub-
traction, multiplication, division and power functions, respectively. Here are some
(trivial) examples:

2 + 3 NB. addition
5

2 - 3 NB. subtraction
_1

7 * 3 NB. multiplication
21

2 % 7 NB. division: "%" is used instead of "/"
0.285714

22 2 Fundamentals of the J Programming Language

2ˆ3 NB. power
8

In J, there is a subtle (but important) difference between _1 and -1. The term _1 is
the value minus one, whereas -1 is the negation function applied to (positive) one.

Arithmetic can also be performed on lists of numbers:

2 % 0 1 2 3 4 NB. divide scalar by a vector
_ 2 1 0.666667 0.5

3 2 1 0 - 0 1 2 3 NB. pointwise vector subtraction
3 1 _1 _3

The example above demonstrates how J deals with divide by zero. Any division by
zero returns a _ (∞). In addition to the basic arithmetic operators, J has many more
primitives, for example:

+: 1 2 3 4 NB. double
2 4 6 8

-: 1 2 3 4 NB. halve
0.5 1 1.5 2

%: 1 4 9 16 NB. square root
1 2 3 4

*: 1 2 3 4 NB. squared
1 4 9 16

>: _1 0 1 2 3 NB. increment
0 1 2 3 4

<: _1 0 1 2 3 NB. decrement
_2 _1 0 1 2

Verbs are denoted by either a single character (such as addition +) or a pair of charac-
ters (such as double +:). Some primitives do use alphabetic characters, for example,
the integers verb i. and complex verb j., which were introduced above.

2.3 Monadic and Dyadic functions

Each verb in J possesses the property of valance, which relates to how many argu-
ments a verb takes. Monadic verbs take one argument (and are therefore of valance
one), whereas dyadic verbs take two arguments (valance two).

Monadic verbs are expressed in the form: f x. The (single) argument x is passed
to the right of the function f . In functional notation, this is equivalent to f(x). In its
dyadic form, f takes two arguments and are passed to the function on either side:
y f x, equivalent to f(y, x) in functional notation.

2.4 Positional Parameters 23

J’s verb symbols are overloaded; that is, they implement two separate (often related,
but sometimes inverse) functions depending upon the valance. We use the % primitive
to demonstrate. We have already seen it used in its dyadic form as a division operator.
However, in its monadic form, % performs a reciprocal operation:

% 2 NB. used monadically is reciprocal
0.5

3 % 2 NB. used dyadically is division
1.5

Let us look at a few more examples. The monadic expression ˆx is the exponential
function of x: ex. The dyad yˆx, however, performs y to the power x, that is: yx. To
illustrate:

ˆ 0 1 2 3 NB. used monadically is exp(x)
1 2.71828 7.38906 20.0855

2 ˆ 0 1 2 3 NB. used dyadically is yˆx
1 2 4 8

Used monadically <: performs a decrement function:

<: 1 2 3 4 5 6
0 1 2 3 4 5

However as a dyad it performs less-than-or-equal-to1:

4 <: 1 2 3 4 5 6
0 0 0 1 1 1

2.4 Positional Parameters

The meaning of a positional parameter is given by virtue of its relative position in
a sequence of parameters. J does not really have a concept of positional parameters;
however, we can pass positional parameters to functions as an ordered list of argu-
ments. In this section, we introduce verbs for argument processing: left [and right
]. These verbs return the left and right arguments, respectively:

2 [3
2

2] 3
3
1 Similarly >: performs increment and greater-than-or-equal-to.

24 2 Fundamentals of the J Programming Language

The right provides a convenient means of displaying the result of an assignment:

]x =: i.10
0 1 2 3 4 5 6 7 8 9

The left verb can be used to execute two expressions on one line:

x =: i.10 [n =: 2 NB. assign x and n
x ˆ n

0 1 4 9 16 25 36 49 64 81

The verbs head {. and tail {: return the first element and the last element of a list:

{. x
0

{: x
10

Conversely, drop }. and curtail }: remove the head and tail of a list and return the
remaining elements:

}. x
2 4 6 8 10

}: x
0 2 4 6 8

The from verb { is used to extract a particular element (or elements) within a list, by
passing the index of the required element in the list as a left argument:

0 { x
0

2 { x
4

3 1 5 { x
6 2 10

0 0 0 1 2 2 2 3 3 4 5 5 5 5 { x
0 0 0 2 4 4 4 6 6 8 10 10 10 10

Lists can be combined with raze ,. and laminate ,: in columns or rows, respec-
tively. The J expressions below yield two matrices m1 and m2:

]m1 =: 1 2 3 4 ,. 5 6 7 8
1 5
2 6
3 7
4 8

2.4 Positional Parameters 25

]m2 =: 1 2 3 4 ,: 5 6 7 8
1 2 3 4
5 6 7 8

We cover higher-dimensional objects in more detail in Section 2.6. Here, we look
briefly at applying the from verb to matrices:

2 { m1
3 7

1 { m2
5 6 7 8

Here, from returns the third row of m1 in the first example and the second row of m2

in the second example. If we wish to reference an individual scalar element, then we
need to use from twice:

0 { 1 { M2
5

In order to reference a column, we need to be able to change the rank of the verbs.
The concept of rank will be covered in the next section. Two data objects can be
concatenated with ravel (,), for example:

v1 =: 1 2 3 4
v2 =: 5 6
]v3 =: v1,v2

1 2 3 4 5 6
0 3 4 5 { v3

1 4 5 6

This creates a single list of eight elements (v3). There is no separation between the
two original lists v1 and v2. If we wished to retain the separation of the two initial
lists, then we combine them with the link verb ;, for example:

]v4 =: v1;v2
+-------+---+
|1 2 3 4|5 6|
+-------+---+

The lists are “boxed” and therefore exist as separate data objects. We can reference
the two lists in the usual way:

0 { v4
+-------+
|1 2 3 4|
+-------+

26 2 Fundamentals of the J Programming Language

The data object returned is a single element; we cannot get at any of the individual
scalar elements in the box:

1 { 0 { v4
|index error
| 1 {0{v4

Use open > to unbox the object:

> 0 { v4 NB. unbox v1
1 2 3 4

1 { > 0 { v4
2

There is a corresponding inverse function, namely the monadic verb box <, which
“groups” elements:

<1 2 3 4
+-------+
|1 2 3 4|
+-------+

Using the primitives described above, we define a number of functions for referenc-
ing positional parameters. These functions will be used a great deal in developing
functions later in this book. Note that a couple of conjunctions are used here (& and
@) will be covered later, in Section 3.1.4

lhs0 =: [NB. all left arguments
lhs1 =: 0&{@lhs0 NB. 1st left argument
lhs2 =: 1&{@lhs0 NB. 2nd left argument
lhs3 =: 2&{@lhs0 NB. 3rd left argument

rhs0 =:] NB. all right arguments
rhs1 =: 0&{@rhs0 NB. 1st right argument
rhs2 =: 1&{@rhs0 NB. 2nd right argument
rhs3 =: 2&{@rhs0 NB. 3rd right argument

The functions lhs0 and rhs0 evaluate the left and right arguments, respectively.
The other functions are programmed to return positional parameters, thus lhs1
(respectively rhs1) returns the first positional parameter on the left-hand side
(respectively right-hand side). We illustrate the use of positional parameters with the
following example. Consider the classical M/M/1 queuing model given in
Equation (1.6). We can write a function that takes the parameters µ and ρ as left-hand
arguments and right-hand arguments, respectively:

mm1 =: %@lhs1 % 1:-rhs0
3 mm1 0.5 0.6 0.7 0.8 0.9

0.666667 0.833333 1.11111 1.66667 3.33333

2.5 Adverbs 27

2.5 Adverbs

The (default) behaviour of verbs can be altered by combining them with adverbs. We
have already encountered an adverb with the summation function +/. The applica-
tion of / causes + to be inserted between the elements of the argument, in this case,
the individual (scalar) numbers in the list.

+/ i.6 NB. as we’ve seen before
15

0 + 1 + 2 + 3 + 4 + 5 NB. and is equivalent to this
15

The dyadic case results in a matrix of the sum of the elements of the left argument to
each element of the right argument.

(i.6) +/ (i.6)
0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10

The prefix adverb \ causes the data object to be divided into sublists that increase in
size from the left; the associated verb is then applied to each sublist in turn. We can
see how the sublist is generated using the box verb:

<\ i.5
+-+---+-----+-------+---------+
|0|0 1|0 1 2|0 1 2 3|0 1 2 3 4|
+-+---+-----+-------+---------+

A cumulative summation function can be implemented using the insert and prefix
verbs:

+/\ i.6
0 1 3 6 10 15

This function will be useful later on when we wish to convert interval traffic arrival
processes to cumulative traffic arrival processes. The suffix \. operates on decreasing
sublists of the argument:

<\. i.6
+-----------+---------+-------+-----+---+-+
|0 1 2 3 4 5|1 2 3 4 5|2 3 4 5|3 4 5|4 5|5|
+-----------+---------+-------+-----+---+-+

28 2 Fundamentals of the J Programming Language

The monadic reflexive adverb ˜ duplicates the right-hand argument as the left-hand
argument. So the J expresssion f˜ x is equivalent to x f x, for example:

+/˜ i.6 NB. (i.6) +/ (i.6)
0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10

The ˜ verb also has a dyadic form (passive). This means that the left and right-hand
side arguments are swapped; that is, y f x becomes x f y, as an illustration:

2 %˜ i.6 NB. equivalent to (i.6) % 2
0 0.5 1 1.5 2 2.5

2.6 Rank, Shape and Arrays

Arithmetic can be performed between a scalar and a list or between two lists, for
example:

2 * 0 1 2 3 4 5
0 2 4 6 8 10

0 1 2 3 4 5 + 1 2 3 4 5 6
1 3 5 7 9 11

Notice that the lists have to be the same length; otherwise the J interpreter throws a
“length error”:

9 8 - 0 1 2 3 4 5
|length error
| 9 8 -0 1 2 3 4 5

J can also perform arithmetic on higher-dimensional objects. In this section, we in-
troduce arrays as well as the concepts of rank and shape. Rank is synonymous with
dimensionality; thus a two-dimensional array has rank two, a three-dimensional ar-
ray has rank three. Verbs have rank attributes which are used to determine at what
rank level they should operate on data objects. We will explore this later. First, let us
consider at how we can define array objects by using the dyadic shape verb $:

]x2 =: 2 3 $ i.6
0 1 2
3 4 5

2.6 Rank, Shape and Arrays 29

As we have already seen, we could have defined this particular array, simply by:

i. 2 3
0 1 2
3 4 5

This is fine for defining an array with ascending integers (as returned by i.), but
if we wanted to form an array using some arbitrary list of values, then we need to
use $. We will continue to use the $ method, although we acknowledge that it is not
necessary, as the data objects used in these examples are merely ascending integers.
The shape is specified by the left arguments of $ and can be confirmed using the $
in its monadic form:

$ x2
2 3

The data object x2 is a (3×2) two-dimensional array, or, in J terms, a rank two object
(of shape 2 3). Arithmetic can be applied in the usual way. This example shows the
product of a scalar and an array:

2 * x2
0 2 4
6 8 10

Here we have the addition of two arrays (of the same shape):

x2 + (2 3 $ 1 2 3 4 5 6)
1 3 5
7 9 11

J can handle this:

2 3 + x2
2 3 4
6 7 8

But apparently not this:

1 2 3 + x2
|length error
| 1 2 3 +x2

J of course, can handle this, but we need to understand more about the rank control
conjunction " which will be covered in Section 3.1 below. Consider a 3×2×2 array:

30 2 Fundamentals of the J Programming Language

]x3 =: 2 2 3 $ i.12
0 1 2
3 4 5

6 7 8
9 10 11

x3 is a three-dimensional array and, therefore, of rank three. J displays this array
arranged into two planes of two rows and three columns, where the planes are de-
limited by the blank line. We can confirm the structure of x3 by using $ as a monad,
where it peforms a shape-of function:

$ x3
2 2 3

Now, let us apply summation to x3:

+/ x3
6 8 10
12 14 16

Here, the individual elements of the two planes have been summed; that is:(
0 1 2
3 4 5

)
+

(
6 7 8
9 10 11

)
=

(
0 + 6 1 + 7 2 + 8
3 + 9 4 + 10 5 + 11

)

=
(

6 8 10
12 14 16

)

It is important to understand why +/ sums across the planes rather down the columns
or along the rows. First consider this example:

% x3
_ 1 0.5

0.333333 0.25 0.2

0.166667 0.142857 0.125
0.111111 0.1 0.0909091

Aside from the difference between the arithmetic functions +/ and % perform, they
also operate on the argument in a different way. Where as +/ operated on the two
planes, here % is applied to each individual scalar element. The difference in the
behaviour of the two verbs +/ and % is governed by their respective rank attributes.
We can query the rank attribute of verbs with the expressions below:

% b. 0
0 0 0

+/ b. 0
_ _ _

2.6 Rank, Shape and Arrays 31

Three numbers are returned. The first number (reading left to right) is the rank of the
monad form of the verb. The second and third numbers are the ranks of the left and
right arguments of the dyadic form of the verb. When a verb performs an operation
on an object, it determines the rank of the cell elements on which it will operate. It
does this by either using the rank (dimension) of the object or the rank attribute of
the verbs, whichever is smaller. In the example above, x3 has a rank of three, and the
(monadic) rank attribute of % is zero. So % is applied to x3 at rank zero. Thus it is
applied to each 0-cell (scalar) element. However, the rank attribute of +/ is infinite,
and, therefore, the rank, at which the summation is performed, is three. Thus, +/
applies to each 3-cell element of x3, resulting in a summation across the planes.

Consider another example. We define the data object x0 as a list of six elements and
then apply the fork ($,#) which (simultaneously) returns the shape and the number
elements.

]x0 =: i.6
0 1 2 3 4 5
($;#) x0

+-+-+
|6|6|
+-+-+

Here both # and $ return six as x0 consists of six atoms, or 0-cell elements. Now try
this on x2 which was declared earlier:

($;#) x2
+---+-+
|2 3|2|
+---+-+

The resultant shape is as expected but the number of elements returned by tally may
not be. To make sense of the result, we need to know what “elements” the tally is
counting: 0-cell, 1-cell or 2-cell? This depends upon the rank at which # is operating.
The data object x2 is clearly rank two. The command-line below shows us that the
(monadic) verb attribute of # is infinite:

b. 0 NB. monadic rank attribute is infinite
_ 1 _

In this particular case we may ignore the dyadic rank attributes. Tally (#) is applied
to the 2-cell elements which are the rows. Consider this example:

]x1 =: 1 6 $ i.6
0 1 2 3 4 5

($;#) x1
+---+-+

32 2 Fundamentals of the J Programming Language

|1 6|1|
+---+-+

Data objects x0 and x1 may appear the same but they are actually different by virtue
of their shape and rank. x1 is a (6×1) two-dimensional array, and, therefore, of rank
two (with shape 1 6). It also has only one element (one row) because # still operates
on the 2-cell elements. In contrast, x0 is a list of six 0-cell elements. In actual fact,
x0 is equivalent to y0, defined below:

]y0 =: 6 $ i.6
0 1 2 3 4 5

x0 = y0 NB. x0 and y0 are equivalent
1 1 1 1 1 1

x0 = x1 NB. but x0 and x1, as we know, are not
|length error
| x0 =x1

The difference between x0 and x1 becomes more apparent when we perform some
arithmetic operation on them:

x1 - x0
|length error
| x1 -x0

The interpreter is trying to subtract the first element from x1 from the first element
of x0, then subtract the second element from x1 from the second element of x0, and
so on. However, while x0 has six 0-cell elements, x1 only has one element, which
is a 2-cell. However it does not seem unreasonable to want to perform arithmetic
operations on x0 and x1, as they both contain six numbers. We can control the rank
attribute of a verb, thereby enabling us to perform arithmetic on both x0 and x1. We
will return to this example in Chapter 3 when we cover conjunctions.

2.7 Summary

In this chapter we have introduced some of the basic concepts of programming in J.
J functions are called verbs. The primitive verbs are (mostly) designated by a single
punctuation character (+) or a pair of punctuation characters (+:), though a few use
alphabetic characters (i.). Verbs can be monadic (one argument) or dyadic (two
arguments). Data objects have properties of rank (dimension) and shape. All objects
can be thought of as arrays. Atoms (0-cell), lists (1-cell) or tables (2-cell) are merely
special instances of arrays ranked (dimensioned) zero, one and two, respectively.
Furthermore any n ranked array can be thought of as a list of n−1 cell objects. Note
that, an atom has an empty shape and is different from a one-item list. Furthermore,
a list is different from a 1×n table. Verbs have rank attributes that determine at what
cell level they operate.

3

Programming in J

New verbs can be defined from existing ones by combining them in sequences called
phrases. In this chapter, we focus on programming in J and describe in detail the rules
of composition. We begin by using J to explore the concept of z-transforms. This
exercise serves as a brief introduction to composition contructs and conjunctions.
Subsequent sections cover these concepts in greater detail.

The z-transform converts discrete signals in the time domain into a complex fre-
quency time domain. The z-transform involves the summation of an infinite series of
reciprocals of z−n [41]:

Z{x[n]} =
∞∑

n=0

x[n]z−n (3.1)

where z can be complex and x[n] is a sequence or function indexed by n. Consider
the unit step function u[n]:

u[n] =
{

1 if n ≥ 0
0 if n < 0 (3.2)

The corresponding z-transform for u[n] is:

Z{u[n]} =
z

z − 1
, |z| > 1 (3.3)

The J expression below implements the z-transform in Equation (3.3) for u[n]:

z =: 2 3 4 5 6 7 NB. define |z| > 1
(%<:) z

2 1.5 1.33333 1.25 1.2 1.16667

The expression above consists of a two verb phrase (enclosed in brackets) followed
by an argument z. The pair of verbs, namely, % and <:, form a compositional con-
struct called a hook. The J interpreter parses the phrase right to left. The argument

34 3 Programming in J

z undergoes a transformation by the first verb (reading from the right). The second
verb is then applied to the argument and the transformation. Thus, all the values in z
are decremented by <:, then the division operator % is applied, where the numerator
is z and the denominator is the result of the decrement operation (z − 1).

The step verb can be implemented by the mathematical function less-than-or-equal-
to, where a value of one is returned if true, and zero otherwise. In J, the <, +. and
= are the less-than, or and equals-to verbs, respectively. Thus, the phrase in the
expression below implements the step1 function for n = 3:

n =: i.10
3 (<+.=) n

0 0 0 1 1 1 1 1 1 1

A sequence of three verbs forms a fork. The arguments undergo transformations by
both the left and right verbs (< and =, is this case). The middle verb (+.) is applied
to the resultant tranformations. Functions in J may be unnamed phrases, enclosed in
brackets, as in: (<+.=). For convenience, however, we may assign the phrase to a
name, defining a new verb thus:

step =: < +. = NB. less than or equal to

The unit step function u[n] in Equation (3.2) is realised by invoking step with a left
argument of zero. The unit step function can be defined by attaching the constant 0
to the step function:

ustep =: 0&step
ustep n

1 1 1 1 1 1 1 1 1 1

In J, & is a conjunction, and is used to bind nouns to verbs. Mathematically, ustep
implements the function less-than-or-equal-to-zero, The expression below yields the
z-transform for u[n], confirming the result in Equation (3.3). The tranformation in
Equation (3.1) is a summation to n = ∞. For practical purposes, instead of n = ∞,
we choose a sufficiently large value for n:

n =: i.100
+/ (ustep * z&ˆ@-) n

2 1.5 1.33333 1.25 1.2 1.16667

Note the use of the bind conjunction again, whereby the term z&ˆ forms a z-to-
the-power verb. Another conjunction is also used, namely atop @. The composition
of one verb atop another, constitutes a transformation of a transformation. Here, the
z-to-the-power verb is applied atop the negation - yielding the mathematical term
z−n.
1 We implement the step function in this way merely for illustration, J provides a built-in

less-than-or-equal-to verb: <:.

3.1 Verb Composition 35

3.1 Verb Composition

In the introductory example above, we briefly demonstrated the rules of composition.
We showed how verbs are combined, sometimes with conjunctions, to implement
new verbs. In this section, we cover verb composition in more detail and present the
concept of tacit programming.

3.1.1 Hooks

A sequence of two verbs forms a hook. If f1 and f2 are verbs, then the monadic
phrase: (f1 f2) x, where x is an argument, is equivalent to the function
expression: f1(x, f2(x)). The verb f2 performs a monadic operation on x. Then f1

performs an operation on the result of x and f2(x). The function f1 behaves as a
dyad, as it operates on two “arguments.” To illustrate this we provide a number of
examples. The hook below implements the expression x2 + x:

x =: i.6 NB. assign a vector of numbers to x
(+*:) x

0 2 6 12 20 30

Each value in x is squared (by *:). This result is then added to the vector x; thus the
expression above is equivalent to:

{0 + 0, 1 + 1, 4 + 2, 9 + 3, 16 + 4, 25 + 5}

In the following example, each value of x is doubled (+:) and then multiplied by x,
which is equivalent to x × 2x, or 2x2:

(*+:) x NB. double then multiply
0 2 8 18 32 50

The expression x − 1/x is implemented by:

(-%) x NB. subtract reciprocal from each value
0 1.5 2.66667 3.75

The dyadic form of the hook is given by: y (f1 f2) x, where x and y are argu-
ments. Here, f2 performs a monadic operation on x. Then f1 performs a dyadic
operation on y and the result of f1(x). Expressed in functional notation, the dyadic
hook is equivalent to: f1(y, f2(x)).

The example below implements the expression y +
√

x:

y =: 2
y (+%:) x

2 3 3.41421 3.73205 4 4.23607

36 3 Programming in J

3.1.2 Forks

A monadic fork is a three-verb phrase (f1 f2 f3) x. Expressed in functional
notation, this is equivalent to f2(f1(x), f3(x)). Verbs f1 and f3 operate on x as
monads. The results of f1(x) and f3(x) are then operated on by f2 as a dyad. The
dyadic form of the fork is: y (f1 f2 f3) x which in functional notation is:
f2(f1(y, x), f3(y, x)). The verb f1 operates on y and x, as a dyad, as does f3. The
results of f1(y, x) and f3(y, x) are then operated on by f2 as a dyad.

A ubiquitous (but nevertheless good) example of a (monadic) fork is the arithmetic
mean function:

(+/%#) x NB. arithmetic mean
2.5

The tally verb # returns the number elements in the vector x (in this case 6). The +/
returns the summation of x. Then the verb % is applied to the result of verbs +/ and
#, thus dividing the sum of the elements by the number of elements. Note that, here,
% is applied dyadically, so it performs a division function rather than the (monadic)
reciprocal form of the verb.

The example below shows a dyadic fork. The expression yx − y/x can be imple-
mented by:

y (*-%) x
__ 0 3 5.33333 7.5 9.6

3.1.3 Longer Phrases

To reiterate, phrases are evaluated right to left. The hook and fork rules of composi-
tion are applied. Consider the example below:

(-+/%#) x
_2.5 _1.5 _0.5 0.5 1.5 2.5

A fork is formed by the three primitives: +/%# which, as we saw above, implement
the arithmetic mean. This, in turn, forms a hook with -. We can make the example a
little clearer if we define an arithmetic mean verb:

mean =: +/%# NB. define mean
(-mean) x NB. deviation from the mean

_2.5 _1.5 _0.5 0.5 1.5 2.5

We can see that - and mean form a hook, which subtracts x (the mean of x) from
each element of x; that is, xi − x. The phrase -mean implements the deviation-from-
mean function.

3.1 Verb Composition 37

3.1.4 Conjunctions

In this section, we discuss verb composition with conjunctions. The bond verb &
is used to combine verbs and nouns to form new verbs. For instance, if ˆ. is used
monadically, it performs the natural logarithm function (ln); dyadically, however, it
performs the logarithm to the base of left argument. This is illustrated in the example
below:

ˆ. 1 2 4 10 100 NB. natural log
0 0.693147 1.38629 2.30259 4.60517

2 ˆ. 1 2 4 10 100 NB. log to the base 2
0 1 2 3.32193 6.64386

10 ˆ. 1 2 4 10 100 NB. log to the base 10
0 0.30103 0.60206 1 2

For convenience, we can define the verb log2 by binding the 2 to verb ˆ., that is:

log2 =: 2&ˆ. NB. define log to the base 2

Here the literal 2 is bonded to ˆ. to form a new verb which, used monadically, gives:

log2 1 2 4 10 100
0 1 2 3.32193 6.64386

Similarly, log10 can be defined:

log10 =: 10&ˆ. NB. define log to the base 10

For readability we can define the natural logarithm:

ln =: ˆ. NB. define natural log

The & conjunction can also be used to combine verbs. Used in this way it is called
the compose conjunction. In functional notation, the dyadic phrase (f1&f2) x, is
equivalent to f1(f2(x), f2(x)). For the dyadic form of the phrase: y (f1&f2) x
the functional equivalent is f1(f2(y), f2(x)). Consider the use of not verb -. in the
example below which produces a list on integers between three and nine:

(i.10) -. (i.3)
3 4 5 6 7 8 9

This can be achieved with the phrase below, where we pass the bounds of the list as
parameters, though the value of the left argument is not included in the list. Thus:

10 (-.&i.) 3
3 4 5 6 7 8 9

38 3 Programming in J

The to verb, defined below, is a useful function for generating a list of integers from
the value of the left argument to the value of the right agrument:

to =: -.&i.˜,]
3 to 10

3 4 5 6 7 8 9 10

The passive adverb allows us to reverse the arguments and the right verb] ensures
the right argument is included in the list.

The atop conjunction @ (and related at conjunction @:) provide a means of combin-
ing verbs in sequence. Consider the monadic phrase in the form: (f1@f2) x. The
verb f2 is applied monadically to x, then f1 is applied monadically to the result. In
functional notation, this is equivalent to: f1(f2(x)).

Suppose we wish to compute the arithmetic mean and then negate the result. We can-
not use the expression −mean, as this forms a hook between the - and mean verbs.
As demonstrated above, this returns the deviation from the mean; that is xi − x,
whereas the operation we actually want is −x. The hook causes the - to behave
dyadically and thus performs subtraction. The atop conjunction @ alters the compo-
sitional rules between - and mean, such that - is applied monadically to the result
of mean. The phrase below gives the desired result:

(-@mean) x
_3.5

If the at conjunction is used instead, we get, in this case, the same result:

(-@:mean) x
_3.5

While the atop and at are similar, they do have a subtle but important difference.
Suppose we wish to sum a list of reciprocals:

i=n∑
i=1

1
xi

(3.4)

In the example below +/ is applied atop %, thus:

(+/@%) x
1 0.5 0.333333 0.25 0.2 0.166667

However, this has not performed the operation Equation (3.4). In Section 2.6, we
saw that the +/ had an infinite monadic (and dyadic) rank and, therefore, should
have operated across the entire object. However +/ has combined with %, which has
a (monadic and dyadic) rank of zero:

3.1 Verb Composition 39

% b. 0
0 0 0

For the phrase: f1@f2, f1 inherits the rank of f2. Thus, for (+/@%), +/ inherits
the rank of zero from -. This can be confirmed by:

(+/@-) b. 0
0 0 0

The at conjunction performs the same sequencing operation as atop, but without rank
inheritance:

(+/@:-) b. 0
_ _ _

The J expression below confirms that the phrase operates at the desired rank and
correctly performs the operation in Equation (3.4):

(+/@:%) x
2.45

The phrase below shows the atop conjunction used in dyadic form: y (f1@f2) x.
In functional notation, this is equivalent to f1(f2(y, x)). The arguments y and x are
operated on by f2, which behaves as a dyad, f1 then operates monadically on the
result. The dyad below implements the expression 2y/x:

y (+:@%) x
_ 4 2 1.33333 1 0.8

Sometimes it is necessary to override the rank of a verb. Let us return to the example
of the three dimensional array x3 from Section 2.6. We redefine x3 below:

]x3 =: i. 2 2 3
0 1 2
3 4 5

6 7 8
9 10 11

Recall that, when we applied +/ to x3, it summed the elements across the planes:

+/ x3
6 8 10
12 14 16

40 3 Programming in J

If we wish to sum x3 along the rows, we need to explicitly specify the rank attribute
of the verb with the " conjunction:

+/"1 x3
3 12
21 30

Here the (monadic) rank attribute has been explicitly set to one. This can be con-
firmed by:

+"1 b. 0
1 1 1

It is important that the rank attribute of +/ has not been changed. A new verb has
been formed, one which performs the summation of the rows of, in this case, a matrix.
To sum down the columns set the rank attribute to two:

+/"2 x3
3 5 7
15 17 19

Also, from Section 2.6, we can re-examine the addition of the two-dimensional array
x2 to a three element list. Redefine x2:

]x2 =: i. 2 3
0 1 2
3 4 5

An error is returned if we use the expression:

1 2 3 + x2
|length error
| 1 2 3 +x2

Specifying a rank attribute of one gives the desired result:

1 2 3 +"1 x2
1 3 5
4 6 8

The gerund ‘ provides a means joining a number of verbs in a list. It is commonly
used on agenda conjunction @. for implementing selection.

x(t) =
{

2t + 1 if t > 0
0 otherwise (3.5)

We illustrate gerund and agenda with the following example. The function x = 2t+1
can be implemented with the J expression:

3.2 Examples 41

(>:@+:) i:5
_9 _7 _5 _3 _1 1 3 5 7 9 11

However x = 2t + 1 ∀t, whereas for t ≤ 0, in Equation (3.5), x = 0. This can be
implemented by the phrase:

0: ‘ (>:@+:) @. (0&<:) &> i:5
0 0 0 0 0 1 3 5 7 9 11

The function (0&<:) acts as a condition statement, returning one if the argument is
greater than zero and zero otherwise:

(0&<:) i:5
0 0 0 0 0 1 1 1 1 1 1

The first function in the list is invoked if the condition statement returns a zero,
which in this case is the constant function 0:. The next function is invoked, in this
case (>:@+:), if one is returned.

Note the use of the &>. This ensures that the phrase is applied to each element in the
list. From the expression below we can see that the phrase in question has infinite
rank and, therefore, does not apply at the 0-cell level as we wish:

0: ‘(>:@+:) @. (0&<:) b. 0
_ _ _

We could explicitly specify a zero rank:

0: ‘ (>:@+:) @. (0&<:)"0 i:5
0 0 0 0 0 1 3 5 7 9 11

We can avoid setting the rank by using each construct &>. This method is frequently
used in this book.

3.2 Examples

In this section we present a number of worked examples to demonstrate how to impl-
ement some mathematical expressions related to data networks.

42 3 Programming in J

3.2.1 More z-transforms

We continue with the z-transforms in the introduction to this chapter. The unit im-
pulse function is closely related to the unit step function (Equation (3.2)), where u[n]
is the running sum of δ[n].

u[n] =:
∞∑

n=0

δ[n] (3.6)

We can implement δ[n] with the J verb below:

uimpls =: 0&=

The phrase forms an equal-to-zero function, as demonstrated in the command-line
below:

n =: i.10
uimpls n

1 0 0 0 0 0 0 0 0 0

The z-transform for δ[n] is 1 ∀z. The implementation of the z-transform for the δ[n]
function is trivial, as we can just use the 1: constant verb:

z =: 1 2 3 4 5 6
1: &> z

1 1 1 1 1 1

The transform in Equation (3.1) is realised by the J expression below. It confirms that
the δ[n] function yields a value of one:

n =: i.100
+/ (uimpls * z&ˆ@-) n

1 1 1 1 1 1

Consider the transform of the function anu[n]:

Z{anu[n]} =
1

1 − az−1
, |z| > |a| (3.7)

The left-hand side of the expression in Equation (3.7) is implemented by the phrase
in brackets:

a =: 2 [z =: 3 4 5 6 7 8
a (%@>:@-@*%) z

3 2 1.66667 1.5 1.4 1.33333

The corresponding z-transform anu[n] can be found using the unit step function:

n =: 100
+/ (a&ˆ * ustep * z&ˆ@-) n

3 2 1.66667 1.5 1.4 1.33333

3.2 Examples 43

3.2.2 Shannon’s Result

Consider the example of Shannon’s result for the maximum channel capacity C [62]:

C = W log2

(
1 +

S

N

)
(3.8)

where W is the bandwidth of the channel and S/N is the signal to noise ratio. For a
bandwidth W = 3100 Hz and signal to noise ration S/N = 1000 : 1 (30 dB), the
channel capacity C is given by the J expression:

3100 (*log2 @ >:) 1000
30898.4

Thus, the channel capacity C is approximately 30.9 kb/s. The increment verb >:
adds one to the right argument, which, in this case, is the signal to noise ratio S/N =
1000. The verb log2 is applied to the result of >: using the atop conjunction. Finally,
the * verb performs the multiplication function between the left argument (W =
3100) and the result of log2.

3.2.3 Euler’s Formula

Euler’s formula [59] demonstrates the relationship between the exponential function
and the trigonometrical functions:

eiθ = cosθ + isinθ (3.9)

where i =
√
−1 is the imaginary unit. J comes supplied with trigonometrical func-

tions, but they have to be loaded:

load ’trig’ NB. load trigonometrical functions
]th =: 2p1 * (i.>:4)%4 NB. 2p1 = 2*pi

0 1.5708 3.14159 4.71239 6.28319
sin th

0 1 1.22465e_16 _1 _2.44929e_16

The complex verb j. multiplies its argument by 0j1 so we can implement (the right
hand side of) Euler’s formula as:

eu1 =: cos+j.@sin
eu1 th

1 6.1232e_17j1 _1j1.2247e_16 _1.837e_16j_1 1j_2.4493e_16

However, with J, we can implement Euler’s formula from the left-hand side of
Equation (3.9):

44 3 Programming in J

eu2 =: ˆ@j.
eu2 th

1 0j1 _1 0j_1 1

From these results, eu1 and eu2 may not appear equivalent, but closer examination
reveals that they (nearly) are. The problem is that eu1 has suffered precision error and
returned very small values for results that should actually be zero. For this reason,
eu2 is favoured over eu1:

eu =: ˆ@j.

Moreover, this solution is far more elegant, and quite fitting, as Euler’s formula is
considered to be one of the most beautiful mathematical equations. To conclude this
example, we demonstrate Euler’s identity:

eiπ + 1 = 0 (3.10)

We can confirm this with:

>:@eu 1p1 NB. 1p1 = 3.14159 (pi)
0

Euler’s formula is used extensively in transforms. We will make use of it later in
developing a Fourier transform function.

3.2.4 Information Entropy

The concept of entropy in information theory relates to the degree of randomness in
a signal [62]. For n discrete symbols in a signal, the entropy H is given by:

H = −
i=n∑
i=1

p(i) log p(i) (3.11)

where p(i) is the probability of symbol i occurring. We need the log2 function that
was defined earlier. We define p0 and p1 as probability distributions for a signal that
comprises four distinct symbols:

]p0 =: (#%) 4
0.25 0.25 0.25 0.25 NB. equal probability

]p1 =: 0.1 0.2 0.5 0.2
0.1 0.2 0.5 0.2

We will develop the function in stages, so that we can show how it works. First
multiply p1(i) by log2p1(i):

3.3 Good Programming Practice 45

(*log2) p1
_0.332193 _0.464386 _0.5 _0.464386

Then sum the resultant terms (
∑i=n

i=1 p1(i) log2 p1(i)):

(+/@:*log2) p1
_1.76096

The final operation is to negate the result:

(-+/@:*log2) p1
1.76096

entropy =: -+/@:*log2 NB. define entropy

We can compute Hmax by applying entropy to p0, the probability distribution for
when all symbols are equally likely:

entropy p0 NB. gives value of maximum entropy
2

We can compute the amount of redundancy Hmax −H for a particular signal (in this
case with probability distribution p):

-/@entropy p0,.p1
0.239036

3.3 Good Programming Practice

Before undertaking any serious program development in J it is worth looking briefly
at good programming practices. Consider the expression for computing the sample
variance σ2:

σ2 =
1

n − 1

i=n∑
i=1

(xi − x)2 (3.12)

where x is the arithmetic mean. One implementation of the sample variance in J is:

var1 =: <:@#%˜+/@(*:@-+/%#)
var1 i.6

3.5

There are a couple of issues relating to this verb. Firstly, it is virtually unreadable.
Secondly, it is very difficult to debug, as this is just one function made out of nine
primitives and four conjunctions. In short, this is not how to write J code! In this

46 3 Programming in J

respect, J is like any other programming language; it is quite easy to write unreadable
code that is difficult to debug.

Here, we rewrite the variance function. In Subsection 3.1.3 we showed a phrase that
implemented a deviations-from-mean function. We define it thus:

mdev =: -mean NB. deviations from the mean
mdev i.6

_2.5 _1.5 _0.5 0.5 1.5 2.5

Then, we square the deviations ((xi − x)2):

sqdev =: *:@mdev NB. square of the deviations
sqdev i.6

6.25 2.25 0.25 0.25 2.25 6.25

And compute the sum of squares:

sumsq =: +/@sqdev NB. sum of squares
sumsq i.6

17.5

The degrees of freedom is just n − 1:

dof =: <:@# NB. tally decremented by 1
dof i.6

5

The resulting function var2 shows that the variance is merely the sum of square
deviations divided by the degrees of freedom:

var2 =: sumsq%dof
var2 i.6

3.5

Furthermore, the standard deviation σ is just the square root (%:) of the variance:

std =: %:@var2
std i.6

1.70783

It can be seen that breaking down (complex) J functions into smaller ones aids read-
ability. Furthermore, each component function can be tested, making debugging eas-
ier. As a rule of thumb, do not use more than four functions to implement any other
function. Despite the benefits of breaking functions down into smaller functions there
is one drawback, and that is the necessity that (sub) function names are unique. As
the number of functions we develop grows the greater the chance that two functions
names will clash. In the next subsection we introduce locales as a means of avoiding
clashes in the name space.

3.3 Good Programming Practice 47

3.3.1 Locales

Functions can be organised into modules or locales. Verb names need only be unique
within the locale, which helps to avoid name space clashes. In the example below,
we define two verbs with the same name: f1. An extra identifier is appended to verbs
to denote the locale.

f1_myloc_ =: +*: NB. define f1 in ’myloc’
f1_newloc_ =: *-: NB. define f1 in ’newloc’

The verb f1_myloc_ is defined in locale myloc, while f1_newloc_ is defined
in newloc. Notice that the locale name appears between two underscores. In order
to reference them, we need to specify their function name and their locale:

f1_myloc_ i.6
0 2 6 12 20 30

f1_newloc_ i.6
0 0.5 2 4.5 8 12.5

However, this is only because we are not in either the myloc or newloc locales. The
default locale is called base We can verify the locale we are in by the following
(somewhat obscure) command:

18!:5 ’’
+----+
|base|
+----+

We can change the locale with the following command:

cocurrent <’myloc’

Now, when we reference any verb defined within this locale, we do not need to
include the locale name as part of the function name:

f1 i.6
0 2 6 12 20 30

Just to verify that we are indeed in the myloc locale. The phrase below returns the
current locale:

18!:5 ’’
+-----+
|myloc|
+-----+

48 3 Programming in J

Similarly for the f1 defined in newloc:

cocurrent <’newloc’
f1 i.6

0 0.5 2 4.5 8 12.5

If we define a new verb f2 here (omitting the locale designation), then f2 will be in
the newloc locale:

f2 =: 5&*
f2 i.6

0 5 10 15 20 25

We can define and reference f2 without explicitly specifying the locale; but if we
then return to the base locale, references to f2 require the locale:

cocurrent <’base’
f2 i.6 NB. f2 not defined in ’base’ locale

|value error: f2
| f2 i.6

f2_newloc_ i.6
0 5 10 15 20 25

In addition to the base locale, there is the z locale, which is appended to the search
path of the current locale. When a verb is referenced without an explicit locale qual-
ification, J searches for it in the current locale (either the base locale of the locale
specified by the cocurrent directive). If it is not found, then the z locale is searched.
Typically the z locale is used to hold standard utilities. The convention used in this
book is to write a complex function as a series of subfunctions. These subfunctions
are defined in some new locale. The actual function is defined in the z locale and
references its subfunctions using an appropriate locale qualification. Any “wrapper”
functions are defined in the z locale. Wrapper functions are discussed in the next
subsection where we deal with explicit programming.

3.3.2 Explicit Programming

The verb composition methods covered so far in this book are refered to as tacit
programming. With tacit programming, there is no explicit reference to arguments. J
does, however, allow explicit programming methods where arguments are explicitly
referenced. The verb definition below implements an explicit addition function:

add =: 4 : ’x. + y.’

3.4 Scripts 49

The literal argument 4 specifies that the verb definition is dyadic (3 specifies
monadic). Here we use explicit reference names, namely x., which is the left ar-
gument and y., which is the right argument. Explicit programming also allows for
conventional programming constructs like branches (if statements) and flow-control
(for and while loops). Here is a conventional definition of the summation function:

sum =: 3 : 0
n =. 0 [total =. 0
for_k. y.
do.
total =. total + k

end.
total
)

Check that sum yields the same result as +/ with the expression:

(+/;sum) i.6
+--+--+
|15|15|
+--+--+

While J supports explicit programming techniques, it is better to adopt tacit pro-
gramming over explicit programming where possible. Verbs that are defined tacitly
are interpreted at definition time, whereas explicit verb definitions are translated at
execution time. However, there may be times when a function is too complex to be
written entirely in tacit form and it is more convenient to write it in explicit form.
Tacit programming methods (as we will show) are conducive to implementing the
concepts in this topic area. Explicit programming is used when complexity necessi-
tates this. Primarily, we use explicit functions as wrappers that call tacit functions
that perform the core computational operations.

3.4 Scripts

Verb definitions are lost when the J session is closed down. Verbs definitions can
be preserved by storing them in a script file. When the J interpreter is started, the
scripts can be loaded in. Create a file fscript.ijs that contains the following function
definitions:

NB. Script file for verb f
f =: *:+-: NB. xˆ2 + x/2

Now start up a new J sesssion and try to run the function f :

50 3 Programming in J

f i.6
|value error: f
| f i.6

As this is a new J session, any previous function definitions will be lost. However,
they can be restored by loading fscript.ijs:

load ’fscript.ijs’
f i.6

0 1.5 5 10.5 18 27.5

The directory pathname has to be specified if the script is in a different directory
from which the J session was executed. Script files can be loaded at the beginning of
the J session by using the load command in the startup script. For more details see,
Appendix A.

3.5 Summary

In the chapter we have primarily focused on verb composition. A sequence of verbs
forms a phrase that combine to define a new verb. The two basic compositional con-
structs are the hook and fork. A hook is a sequence of two verbs: (f1 f2) and
a fork is a sequence of three verbs: (f1 f2 f3). Conjunctions such bond & and
atop @ (and at @:) are also compositional constructs. The & conjunction enables
constants to be attached to verbs. The @ is a sequencing construct: (f1@f2), where
f1 performs a transformation on the transformation of f2 on its arguments. However
the @ conjunction causes rank inheritance, that is f1 inherits the rank attributes of f2

and will operate at that rank. In cases where we wish to avoid rank inheritance, we
use the at conjunction @: instead.

4

Network Calculus

Network calculus is a framework for analysing network traffic flows. In classical
queuing theory [33] traffic arrivals are expressed as stochatic processes. In network
calculus a flow is characterised as a wide-sense increasing function, which defines
an upper bound on the cumulative number of arrivals over a time interval. Any other
characteristics of the flow beyond this are unknown. Similarly, network resources
can also be expressed in terms of wide-sense increasing functions. The foundations
of network calculus is min-plus algebra, in which the “addition” and “multiplication”
operators are replaced by minimum and plus, respectively. Furthermore, +∞ is incl-
uded in the set of elements over which min-plus algebra is performed. By applying
this algebraic structure to wide-sense increasing arrival and services curves, upper-
bounds on QoS metrics, such as delay and backlog, can be derived

Only a few pre-defined functions are required for this chapter. They are:

min_z_ =: <./ NB. minimum
max_z_ =: >./ NB. maximum
max0 =: 0&max NB. max(0,x)
ceil =: <. NB. ceiling function

4.1 Characterising Traffic Flows

In Chapter 1, a traffic flow was represented as a sequence a indexed by t = 1, 2, . . .,
where a(t) is the number of arrivals in the interval t. Alternatively, traffic flows can
be characterised by a cumulative sequence A = {A(t), t = 0, 1, . . .}, where A(t) is
the number of arrivals in the interval [0, t] and A(0) = 0; that is:

A(t) =
s=t∑
s=1

a(s) A(0) = 0

52 4 Network Calculus

We can characterise A(t) as being f -upper, constrained by the expression:

A(t) − A(s) ≤ f(t − s) ∀0 ≤ s ≤ t (4.1)

We define the arrival sequence a1 as a vector:

a1 =: 3 5 2 4 5 2 3 1 3 2

The J expression below gives A1, which is the sequence of cumulative arrivals of a1:

]A1 =: 0, +/\ a1 NB. prepend zero because A(0) = 0
0 3 8 10 14 19 21 24 25 28 30

For reasons that will become apparent later, it is convenient to define A1(t) as func-
tion instead of as a data object. We can use the seq verb thus:

seq_z_ =: {˜ NB. sequence verb
A1 =: 0 3 8 10 14 19 21 24 25 28 30&seq

We can reference A1(3), for example, with the expression:

A1 3
10

Using the CBR (constant bit rate) link example in Section 1.4, A1(t) is bounded by
f(t) = ct, that is A1 is c-uppper constrained iff:

A1(t) − A1(s) ≤ c · (t − s) ∀0 ≤ s ≤ t (4.2)

Here, we show how to use J to analyse the characteristics of traffic flows. We define
the time index terms t and s as verbs:

t_z_ =:]
s_z_ =: i.@>:@t

The use of t and s is demonstrated below:

hd1 =: ’t’;’s’;’t-s’
hd1,: (t;s;t-s) 10

+--+----------------------+----------------------+
|t |s |t-s |
+--+----------------------+----------------------+
|10|0 1 2 3 4 5 6 7 8 9 10|10 9 8 7 6 5 4 3 2 1 0|
+--+----------------------+----------------------+

Set the CBR link peak rate to c = 3:

4.1 Characterising Traffic Flows 53

c =: 3:

We can realise the inequality in Equation (4.2) with the following expression:

((A1@t - A1@s) <: c*(t-s)) 10
1 1 1 1 1 1 1 1 1 1 1

The result shows that A1 is c-upper constrained over the interval [0, t] for t = 10.
Indeed, the mean rate of the flow A(t)/t = 3, is equivalent to the speed of the CBR
link. However, for A1, traffic does not arrive at a constant rate. For example, the flow
is not c-upper constrained when t = 5:

((A1@t-A1@s) <: c*(t-s)) 5
0 0 0 0 0 1

We can see from the expression below, ∀t and c = 3, A1(t) is not c-upper cons-
trained:

/@ ((A1@t-A1@s) <: c(t-s)) &> i.11
1 1 0 0 0 0 0 0 0 0 1

A CBR link does not allow for bursts of traffic above the peak rate function. The
amount of traffic that departs from the link at any time interval t is bounded by the
peak rate. That is, traffic A(t) − A(t − 1) in excess of c is buffered (or dropped) at
the link. This is a consequence of operating a CBR link at the mean arrival rate of
the flow. Backlog can be avoided by operating the link at the peak rate of the traffic
flow. The peak rate of A1 is derived:

max@(}.@A1 - }:@A1) i.11
5

As expected, the flow A1 is c-upper constrained for c = 5:

c =: 5:

/@ ((A1@t-A1@s) <: c(t-s)) &> i.11
1 1 1 1 1 1 1 1 1 1 1

Traffic flows are typically bursty, such that operating a link at the peak rate of the
flow, typically results in the link being underutilised. Leaky bucket algorithms can
be used to characterise VBR (variable bit rate) flows. A leaky-bucket is defined in
terms of a rate ρ and burst tolerance σ. Thus an arrival curve f is given by:

f(t) = ρt + σ (4.3)

Thus A1(t) is (ρ, σ)-upper constrained if:

A1(t) − A1(s) ≤ ρ · (t − s) + σ (4.4)

We define ρ and σ, respectively as:

54 4 Network Calculus

rho =: 3:
sigma =: 4:
f =: 0&<* sigma + rho*t

The 0&<* term ensures f(0) = 0. From the J expression below, it can be seen that
the inequality in Equation (4.4) is satisfied:

*/@ ((A1@t - A1@s) <: f@(t-s)) &> i.11
1 1 1 1 1 1 1 1 1 1 1

We have shown that we can characterise bursty traffic as a CBR or VBR flow. A1 is
bounded by a CBR flow where the rate c is set to the flow’s peak rate, hence c = 5.
As a VBR flow, A1 is bounded rate ρ = 3 (which is the flow’s mean rate) and a burst
tolerance of σ = 4. Other arrival curves also bound A1:

rho =: 4:
sigma =: 1:

*/@ ((A1@t - A1@s) <: f@(t-s)) &> i.11
1 1 1 1 1 1 1 1 1 1 1

There are, therefore, a number of options in terms of arrival curve for A1.

4.2 Min-Plus Algebra

Network calculus applies system theory to the problem of analysing traffic flows
within networks. When system theory is used to analyse electronic circuits, con-
ventional algebra (R,+,×) can be used. However, when analysing network flows,
min-plus algebra is adopted. With min-plus algebra, addition is replaced by min and
the product is replaced by plus. In conventional algebra, the output signal y(t) ∈ R
of a circuit is the convolution of the input signal x(t) ∈ R and impulse response of
the circuit y(t) ∈ R. Thus the convolution y 	 x, is given by:

(x 	 y)(t) =
∫

0≤s≤t

x(s) · y(t − s)d(s) (4.5)

In min-plus algebra, the convolution operator is:

(f 	 g)(t) = min
0≤s≤t

[f(s) + g(t − s)] (4.6)

where f and g are non-negative, wide-sense increasing functions. The min-plus
algebra is the dioid: ({R ∪ ∞},⊕,⊗) which is a commutative semifield with
properties of:

4.2 Min-Plus Algebra 55

• commutivity

a ⊕ b = b ⊕ a

a ⊗ b = b ⊗ a

• associativity

(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c)

• distributivity

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊕ c)

We demonstrate these three properties for the min (⊕) operator in J (the ⊗ operator
is also commutative, associative and distributive). The expressions below return a
one if the equality is met and zero otherwise. Commutative property:

3 min 2 = 2 min 3
1

Associative property:

((3 min 2) min 4) = 3 min (2 min 4)
1

Distributive property:

((3 min 2) + 4) = (3 + 4) min (2 + 4)
1

Matrix operations can also be performed under min-plus algebra. Thus, for the oper-
ation P ⊕ Q, we have: (

p1

p2

)
⊕

(
q1

q2

)
=

(
min[p1, q1]
min[p2, q2]

)
(4.7)

Which we can demonstrate in J:

P =: 1 4
Q =: 2 3
P min"0 Q

1 3

For the operation P ⊗ M, we have:(
p1

p2

)
⊗

(
m11 m12

m21 m22

)
=

(
min[p1 + m11, p1 + m12]
min[p2 + m21, p2 + m22]

)
(4.8)

In regular algebra, the inner product function is implemented by the phrase (+/.*).
The equivalent inner-product operation in min-plus algebra is (min"1 .+). The
min-plus inner-product is illustrated below:

56 4 Network Calculus

]M =: i. 2 2
0 1
2 3

P (min"1 .+) M
1 5

We are particularly interested in the application of min-plus algebra to functions or
sequences (indexed by t = 1, 2, . . .). Consider the two functions, f1 and g1:

f1(t) =
{

t + 4 if t > 0
0 otherwise (4.9)

g1(t) =
{

3t if t > 0
0 otherwise (4.10)

The functions f1 and g1 are defined below in J:

f1 =: 0&<* (4: + t)
g1 =: 0&<* (3: * t)
(f1 ,: g1) i.11
(f1 ,: g1) i.11

0 5 6 7 8 9 10 11 12 13 14
0 3 6 9 12 15 18 21 24 27 30

The pointwise minimum of two functions is:

(f ⊕ g)(t) = min[f(t), g(t)] (4.11)

There are two ways of expressing Equation (4.11) in J. We illustrate with functions
f1 and g1:

min@(f1@t,g1@t) &> i.11
0 3 6 7 8 9 10 11 12 13 14

or:

(f1@t min g1@t) &> i.11
0 3 6 7 8 9 10 11 12 13 14

The min-plus convolution (f 	 g)(t) (introduced in Section 4.2) is realised by the J
expression:

min@(f1@s+g1@(t-s)) &> i.11
0 3 6 7 8 9 10 11 12 13 14

4.2 Min-Plus Algebra 57

In this particular case f1 	 g1 = min[f1, g1]. We can show that both operations are
commutative, that is: f⊕g = g⊕f and f 	g = g	f . We demonstrate commutativity
in the pointwise minumum:

min@(g1@t,f1@t) &> i.11
0 3 6 7 8 9 10 11 12 13 14

The convolution operator is also commutative:

min@(g1@s + f1@(t-s)) &> i.11
0 3 6 7 8 9 10 11 12 13 14

Min-plus algebra is associative in ⊕, that is (f ⊕ g) ⊕ h = f ⊕ (g ⊕ h): Define a
new function h1(t) = 2t + 1:

h1 =: 0&<* (1: + 2: * t)
h1 i.11

0 3 5 7 9 11 13 15 17 19 21

It can be seen that the two J expressions are equivalent:

min@(min@(f1@t, g1@t), h1@t) &> i.11
0 3 5 7 8 9 10 11 12 13 14

min@(f1@t, min@(g1@t, h1@t)) &> i.11
0 3 5 7 8 9 10 11 12 13 14

Alternatively, we could use the format:

((f1@t min g1@t) min h1@t) &> i.11
0 3 5 7 8 9 10 11 12 13 14

(f1@t min (g1@t min h1@t)) &> i.11
0 3 5 7 8 9 10 11 12 13 14

The operations ⊕ and 	 are distributive, that is:

(f ⊕ g) 	 h = (f 	 h) ⊕ (g 	 h) (4.12)

The left-hand side of Equation (4.12) is given by:

min@((min@(f1@s,:g1@s)) + h1@(t-s)) &> i.11
0 3 5 7 8 9 10 11 12 13 14

Here, we show the right-hand side of Equation (4.12) is equivalent, which confirms
the distrbutive property:

(min@(f1@s+h1@(t-s)) min min@(g1@s+h1@(t-s))) &> i.11
0 3 5 7 8 9 10 11 12 13 14

58 4 Network Calculus

Consider the two sequences ε and e, where ε(t) = ∞ ∀t while e(0) = 0 and e(t) =
∞ ∀t > 0. Then ε is the absorbing element, such that:

f 	 ε = ε 	 f = ε (4.13)

and e is the identity element:

f 	 e = e 	 f = f (4.14)

We can define ε and e in J as:

et_z_ =: _: NB. absorbing element
e_z_ =: _: * * NB. identity element

The J expressions below demonstrate ε and e:

(e,:et) i.11
0 _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _

We demonstrate the absorption and identity properties of Equations (4.13) and (4.14)
using the function f1:

min@(f1@s + et@(t-s)) &> i.11
_ _ _ _ _ _ _ _ _ _ _

min@(f1@s + e@(t-s)) &> i.11
0 5 6 7 8 9 10 11 12 13 14

One of the differences of min-plus algebra and regular algebra is the idempotency of
addition, We show that f = f ⊕ f with the J expression:

min@(f1@t,f1@t) &> i.11
0 5 6 7 8 9 10 11 12 13 14

4.3 Mathematical Background

There are a number of function types that are important to min-plus algebra, namely:

• wide-sense increasing functions

• subadditive functions

• convex and concave functions

In this section we, examine the properties of these functions using J. We also intro-
duce the concept of subadditive closure.

4.3 Mathematical Background 59

4.3.1 Wide-Sense Increasing

F denotes the set of wide-sense increasing functions and sequences. A function f
belongs to the set wide-sense increasing functions F iff:

f(s) ≤ f(t) ∀s ≤ t (4.15)

Furthermore, F0 denotes the set wide-sensing function for which f(0) = 0. Consider
the two functions f2 and g2 below:

f2 =: *ˆ@-
g2 =: %>:

We can see the f2 is not wide-sense increasing:

(f2@s <: f2@t) 10
1 0 0 0 0 0 0 0 0 0 1

However, g2 is:

(g2@s <: g2@t) 10
1 1 1 1 1 1 1 1 1 1 1

4.3.2 Types of Wide-Sense Increasing Functions

We have shown how peak rate and affine functions can be defined using the constant
verbs (1:, 2:, 3: etc). This was done for convenience and served its purpose for
illustrating the fundamental concepts of min-plus algebra. However, the practice is
somewhat restrictive for any serious analysis. Defining wide-sense increasing func-
tions that accept parameters greatly increases analytical flexibility. In this section we,
define parametric peak rate and affine curve verbs. We also introduce other curves
that are used in network calculus. We define a verb that, when applied, ensures a
function belongs to F0, thus:

load ’libs.ijs’ NB. load pos. params. verbs
F0_z_ =: [: 0&< rhs0
F0 i.11

0 1 1 1 1 1 1 1 1 1 1

Peak Rate Function

For a rate R ≥ 0, the peak rate λR(t) function is given by:

λR(t) =
{

Rt if t > 0
0 otherwise (4.16)

The J verb for peak rate function is:

60 4 Network Calculus

pr_z =: F0 * *

Thus, a peak rate function for R = 5 is given by the expression:

5 pr i.11
0 5 10 15 20 25 30 35 40 45 50

For convenience, we can define the function f3 =: λ5(t):

f3 =: 5&pr

Verify that f3 =: λ5(t) is wide-sense increasing for t ≥ 0:

(f3@s <: f3@t) 10
1 1 1 1 1 1 1 1 1 1 1

Affine Function

The affine curve γr,b takes two parameters, the rate r and tolerance b, and is given
by:

γr,b(t) =
{

rt + b if t > 0
0 otherwise (4.17)

The verb for an affine curve is:

af_z_ =: F0 * max0@(lhs2+lhs1*rhs0)

The expression below shows the affine function g3 = γ3,4:

(g3 =: 3 4&af) i.11
0 7 10 13 16 19 22 25 28 31 34

Burst Delay

Burst delay is ∞ for ∀t > T and zero otherwise:

δT (t) =
{

+∞ if t > T
0 otherwise (4.18)

The J verb for the burst delay curve is:

bd_z_ =: F0*_:
3 bd i.11

0 0 0 0 _ _ _ _ _ _ _

4.3 Mathematical Background 61

Rate-Latency

The rate-latency function βR,T is given by the equation:

βR,T (t) = R[t − T]+ =
{

R(t − T) if t > T
0 otherwise (4.19)

where parameters R, T are the rate and latency, respectively. The J verb definition is:

rl_z_ =: lhs1 * max0 @ (rhs0-lhs2)

The rate-latency function β3,2 yields the following result:

3 2 rl i.11
0 0 0 3 6 9 12 15 18 21 24

Step Function

The step function vT for some T > 0 is given by:

vT (t) = 1t>T =
{

1 if t > T
0 otherwise (4.20)

The J verb definition is:

step_z_ =: <

The step function for T = 3 is:

3 step i.11
0 0 0 0 1 1 1 1 1 1 1

Stair Function

The stair function uT,τ takes two parameters, T and τ , where T > 0 and tolerance
0 ≤ τ ≤ T . The expression for the stair function is given by:

uT,τ (t) =
{
� t+τ

T if t > T
0 otherwise (4.21)

The stair function is defined in J as:

stair_z_ =: F0 * ceil@(lhs1 %˜ lhs2 + rhs0)

For T = 3 and τ = 2, the result of the stair function is:

3 2 stair i.11
0 1 1 1 2 2 2 3 3 3 4

Fig 4.1 shows a graphical representation of the wide-sense increasing functions de-
scribed above.

62 4 Network Calculus

Fig. 4.1. Wide-sense increasing functions

4.3.3 Subadditive Functions

Subadditivity is an important property in network calculus. For a traffic flow con-
strained by a non-subadditive function f ′ ∈ F , there exists a subadditive function
f ∈ F which has a tighter bound than f ′. A function or sequence f that belongs to
F is subadditive if and only if ∀s ≤ t and t ≥ 0:

f(t + s) ≤ f(t) + f(s) (4.22)

Define two function f4 and g4:

f4 =: %: NB. sqrt(t)
g4 =: *: NB. tˆ2

The expression below shows that f is subadditive:

(f4@(t+s) <: f4@(t)+f4@(s)) 10
1 1 1 1 1 1 1 1 1 1 1

whereas g is not:

(g4@(t+s) <: g4@(t)+g4@(s)) 10
1 0 0 0 0 0 0 0 0 0 0

This is equivalent to imposing the constraint f ≤ f 	 f . If f ∈ F0, F0 is a subset of
F for which f(0) = 0, then f = f 	 f .

4.3 Mathematical Background 63

(f4@t = min@(f4@s + f4@(t-s))) &> i.10
1 1 1 1 1 1 1 1 1 1

We define a function, h4 ∈ F , where h4(t) = f4(t)+1. The function h is subadditive
although h(0) �= 0, so it satisifies h4 ≤ h4 	 h4, but not h4 = h4 	 h4. This is
demonstrated below:

h4 =: >:@f4
(h4@t = min@(h4@s + h4@(t-s))) &> i.10

0 0 0 0 0 0 0 0 0 0
(h4@t <: min@(h4@s + h4@(t-s))) &> i.10

1 1 1 1 1 1 1 1 1 1

4.3.4 Subadditive Closure

A function constrained by wide-sense increasing function is also constrained by its
subadditive closure. The subadditive closure f∗ of a function f is the largest subad-
ditive function less than or equal to f .

The function f (n) is the convolution of f with itself, that is, f (n) = f 	 f (n−1) and
f (1) = f . The subadditive closure is decreasing in n and converges to a limit. The
function f∗ represents the subadditive closure of f ∈ F and is given by the recursive
equation:

f∗(0) = 0
f∗(t) = min[f(t),min0<v<t[f∗(v) + f∗(t − v)]] (4.23)

We can express this in J using the following J verbs:

v_z_ =: }.@i.@t
stop_z_ =: 2&<.
conv_z_ =: min@(f, close"0@v + close"0@(t-v))
close_z_ =: (0: ‘ f ‘ conv @. stop)"0

For the purpose of illustration, we use the peak rate function f3 = λ3 defined earlier:

f =: f3

We find the subadditive closure:

close &> i.11
0 3 6 9 12 15 18 21 24 27 30

In this case, we can see that f3 is equal to its subadditive closure. Now consider the
function g4 = t2 defined earlier:

64 4 Network Calculus

g4 i.11
0 1 4 9 16 25 36 49 64 81 100

The subadditive closure g∗4 is computed:

f =: g4
close &> i.11

0 1 2 3 4 5 6 7 8 9 10

In this case, the subadditive closure of g4 is less then or equal to g4 itself, that is
g∗4 = t. We can verify that the subadditive closure of g4 is indeed subadditive even
though g4 is not:

(close@t <: min@(close@s + close@(t-s))) &> i.11
1 1 1 1 1 1 1 1 1 1 1

4.3.5 Concavity and Convexity

A function f is concave if, for w ∈ [0, 1], the following holds:

f(ws + (1 − w)t) ≥ wf(s) + (1 − w)f(t) (4.24)

To illustrate, we examine the function f4(t) =
√

t defined earlier. Define w to eval-
uate to the left argument of the verb:

w_z_ =: [

The function below generates a normalised sequence of values, we use to generate
numbers in the interval [0, 1]:

i01_z_ =: %(>./@:|)
i01 i.6

0 0.2 0.4 0.6 0.8 1

Calculate f4(ws + (1 − w)t):

]x1 =: (i01 i.6) f4@((w * s) + >:@-@w * t) &> i.6
0 0 0 0 0 0

0.894427 1 0 0 0 0
1.09545 1.26491 1.41421 0 0 0
1.09545 1.34164 1.54919 1.73205 0 0
0.894427 1.26491 1.54919 1.78885 2 0

Calculate wf4(s) + (1 − w)f4(t):

4.3 Mathematical Background 65

]y1 =: (i01 i.6) ((w * f4@s) + >:@-@w * f4@t) &> i.6
0 0 0 0 0 0

0.8 1 0 0 0 0
0.848528 1.24853 1.41421 0 0 0
0.69282 1.29282 1.54135 1.73205 0 0

0.4 1.2 1.53137 1.78564 2 0
0 1 1.41421 1.73205 2 2.23607

The expression below shows that Equation (4.25) holds, and therefore f4 is concave:

x1 >: y1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Conversely, f is convex if:

f(ws + (1 − w)t) ≤ wf(s) + (1 − w)f(t) (4.25)

Show that g4(t) = t2 is convex:

x2 =: (i01 i.6) g4@((w * s) + >:@-@w * t) &> i.6
y2 =: (i01 i.6) ((w * g4@s) + >:@-@w * g4@t) &> i.6
x2 <: y2

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

4.3.6 Star Shaped Functions

Chang [10] and Le Boudec and Thiran [36] introduce the properties of star-shaped
functions. Function f is star-shaped if f(t)/t is wide-sense decreasing ∀t > 0. Con-
cave functions are star-shaped. Thus:

2 5 $ (f4%t) 1 to 10
1 0.707107 0.57735 0.5 0.447214

0.408248 0.377964 0.353553 0.333333 0.316228

66 4 Network Calculus

Note the shape term 2 5 $ is used merely for brevity, it arranges the output into
a 2 × 5 matrix so that the values may be displayed on the page. The rate latency
function β3,2, which is not concave, is not star-shaped:

3 2 (rl%t) 1 to 10
0 0 1 1.5 1.8 2 2.14286 2.25 2.33333 2.4

We can see that the two functions f3(t) = λ3(t) and g3(t) = γ3,4 are star-shaped:

((f3%t) ,: (g3%t)) 1 to 10
5 5 5 5 5 5 5 5 5 5
7 5 4.33333 4 3.8 3.66667 3.57143 3.5 3.44444 3.4

One of the properties of star-shaped functions is that if f and g are star-shaped then
so is min(f, g). We define h3 as the pointwise minimum of f3 and g3:

(h3 =: f3 min"0 g3) &> i.11
0 5 10 13 16 19 22 25 28 31 34

We show that h3 is also star-shaped:

(h3%t) 1 to 10
5 5 4.33333 4 3.8 3.66667 3.57143 3.5 3.44444 3.4

4.4 Arrival Curves

In Section 4.1, we showed how to characterise traffic flows. We say that, for f ∈ F ,
a flow A is f -upper constrained if:

A(t) − A(s) ≤ f(t − s) ∀s ≤ t (4.26)

This is equivalent to imposing the constraint A = A 	 f , that is:

A = min
0≤s≤t

(A(s) + f(t − s)) (4.27)

Consider a link with a peak rate of f5(t) = λ3(t):

f5 =: 3&pr

We defined the flow sequence A1 in Section 4.1, and we know that A1 is not f5-upper
constrained. Thus, traffic will be buffered at the link causing a backlog, which is
given by:

q(t) = max
0≤s≤t

(A(t) − A(s) − f(t − s)) (4.28)

In J, the backlog q1 is computed thus:

4.4 Arrival Curves 67

]q1 =: max@((A1@t - A1@s) - f5@(t-s)) &> i.11
0 0 2 1 2 4 3 3 1 1 0

The expression in Equation (4.28) is a consequence of the Lindley equation [39]:

q(t + 1) = (q(t) + A(t + 1) − A(t) − c)(+) (4.29)

Chang [10] gives a formal proof by induction. Here, we merely demonstrate that they
are equivalent by showing that Equations (4.28) and (4.29) give the same result for
the example here. The verb for the Lindley equation is (re)defined in Listing 4.1.

Listing 4.1 Lindley Equation

cocurrent < ’LND’
qlist =: rhs0
c =: >@lhs1
alist =: >@lhs2
ind =: <:@#@qlist
anext =: ind { alist
qprev =: {:@qlist
qnext =: max0 @ anext + qprev + c
cocurrent <’base’
lindley_z_ =: qlist_LND_,qnext_LND_

The link capacity is passed to the lindley function as an argument (on the left-hand
side) along with the sequence of arrivals a. Note that a(t) = A(t) = A(t − 1). We
defined a1 in Section 4.1, but we can derive it from A1 with the expression:

]a1 =: (}. - }:) A1 i.11
3 5 2 4 5 2 3 1 3 2

However, a more verbose, but mathematically attractive expression could be:

]a1 =: (A1@(t+1:) - A1@t) &> i.10
3 5 2 4 5 2 3 1 3 2

For convenience, we pass the capacity and the backlog at t = 0 as literals (that is,
c = 3 and q(0) = 0) to the lindley function. We show that Equations (4.28) and
(4.29) are indeed equivalent:

]q2 =: (3;a1) lindleyˆ:(10) 0
0 0 2 1 2 4 3 3 1 1 0

The output of a communications link B is given by the convolution of the arrival
sequence A and the function for the service curve f ; thus B = A	f . Service curves
are covered in Section 4.5 below. The output can therefore, be found:

68 4 Network Calculus

Fig. 4.2. Two CBR links in serial

B(t) = min
0≤s≤t

(A(s) + f(t − s)) (4.30)

Consider the following example. Given the arrival sequence A1 and CBR link oper-
ating at a rate f5 = λ3, the output B1 is:

]B1 =: min@(A1@s + f5@(t-s)) &> i.11
0 3 6 9 12 15 18 21 24 27 30

Assume that there are two CBR links, CBR0 and CBR1 (see Fig 4.2) connected
in series (by a multiplexer which causes no delay) both operating at a rate R = 3
(f5 = λ3). We have seen from the example above that the output of CBR0 is B1 for
a flow with an arrival sequence A1. The arrival sequence A2 = B1 is the input to the
second link, CBR1. We define the sequence A2 in J:

A2 =: B1&seq

We can see that A2 is f1-upper constrained:

*/@ ((A2@t-A2@s) <: f5@(t-s)) &> i.11
1 1 1 1 1 1 1 1 1 1 1

There is no backlog at CBR1 because A2 conforms to the link service curve:

]B2 =: max@((A2@t - A2@s) - f5@(t-s)) &> i.11
0 0 0 0 0 0 0 0 0 0 0

CBR0 has a shaping effect on the traffic flow A1. In this particular case, shaping is
merely a consequence of the link’s capacity and the buffering mechanism. However,
traffic shaping is a common technique for modifying the characteristics of a flow,
such that it conforms to a specific set of traffic descriptors. Shaping can be used to
reduce the backlog (and delays) at a communication link. Suppose we send the flow
A1 through a leaky bucket shaper, which shapes the incoming flow according to the
rate and burst tolerance traffic descriptors r = 3 and b = 1, respectively. Figure 4.3
shows the shaper VBR0 connected to CBR1. Define g5 = γ3,1:

g5 =: 3 1&af

The output from the shaper VBR0 B3 and the arrival flow into CBR1 A3 is:

4.4 Arrival Curves 69

Fig. 4.3. Traffic flow shaped by a g-regulator

]B3 =: min@(A1@s + g5@(t-s)) &> i.11
0 3 7 10 13 16 19 22 25 28 30

A3 =: B3&seq

The arrival flow to CBR1 is A3 = B3, where A3 is g1-upper constrained, though not
f1-upper constrained:

*/@ ((A3@t-A3@s) <: g5@(t-s)) &> i.11
1 1 1 1 1 1 1 1 1 1 1

*/@ ((A3@t-A3@s) <: f5@(t-s)) &> i.11
1 1 0 0 0 0 0 0 0 0 1

However, the backlog at CBR1 is reduced as a result of the shaping by VBR0:

]q4 =: max@((A3@t - A3@s) - f5@(t-s)) &> i.11
0 0 1 1 1 1 1 1 1 1 0

The shaper g5 is called a g-regulator, as it modifies an incoming flow by buffer-
ing nonconforming traffic. It should be clearly understood that shaping traffic with
a g-regulator does not cause the backlog to “disappear,” merely that (some of) the
backlog is incurred in the shaper itself rather than at the interface of the commu-
nications link. An alternative type of shaper is the g-clipper (see Fig 4.4), which
drops nonconforming traffic instead of buffering it. The recursive function gives the
departures B for arrivals A admitted to the g-clipper:

B(t) = min(B(t − 1) + A(t), min
0≤s≤t

(B(s) + g(t − s))) (4.31)

The J verb definition for the g-clipper is given in Listing 4.2.

70 4 Network Calculus

Fig. 4.4. Traffic flow shaped by a g-clipper

Listing 4.2 g-clipper

cocurrent < ’CLIPPER’
Blist =: rhs0
t =: #@Blist
s =: i.@t
Alist =: lhs0
ind =: <:@#@Blist
Bprev =: {:@Blist
Aprev =: ind { Alist
Anext =: >:@ind { Alist
f1 =: min@(Blist + g@(t-s))
f2 =: Bprev + A@t - A@(<:@t)
Bnext =: min@(f1,f2)
cocurrent <’base’
gclipper_z_ =: Blist_CLIPPER_,Bnext_CLIPPER_

The verb gclipper operates explicitly on the arrival sequence A and shaping function
g, thus:

A_CLIPPER_ =: 0 3 7 10 13 16 19 22 25 28 30&seq
g_CLIPPER_ =: 3 1&af

We can calculate the backlog q5 at CBR1 as:

]B5 =: gclipperˆ:(10) 0
0 3 7 9 13 16 18 21 22 25 27

A4 =: B5&seq
]q5 =: max@((A4@t - A4@s) - f1@(t-s)) &> i.11

0 0 1 0 1 1 0 0 0 0 0

It can be seen that, for the same traffic descriptors, the backlog at CBR1 is less when
using the g-clipper than the g-regulator. This performance gain, however, has to be
traded for some loss of traffic.

4.5 Service Curves 71

4.5 Service Curves

In order to provide guarantees to flows, the nodes must make resource reservations
within the network. This function is carried out by packet schedulers. A packet
scheduler is said to offer a service curve f for some 0 ≤ t0 ≤ t if:

B(t) − B(t0) ≥ f(t − t0) (4.32)

where B(t) is the backlog at time t and t0 is the start of the busy period. The backlog
is zero at t0. It follows, then, that B(t0) − A(t0) = 0, and Equation (4.32) can be
rewritten:

B(t) − A(t0) ≥ f(t − t0) (4.33)

This is equivalent to B ≥ A 	 f , or:

B(t) ≥ min
t0≤s≤t

(A(s) + f(t − s)) (4.34)

For the purpose of illustration, consider a CBR link, which guarantees that a flow will
receive a service of rate R = 3, which we can represent using the function f5 = λ3,
defined earlier. Suppose that the node for CBR link introduces a maximum delay of
three. We use the Burst-delay function f6 = δ3 to represent the latency in the node:

f6 =: 3&bd

The overall service curve is given by the convolution of the two service curves: h1 =
f5 	 f6. For convenience, we assume t0 = 0, thus:

h1 =: min@(f5@s+f6@(t-s))
h1 &> i.11

0 0 0 3 6 9 12 15 18 21 24

The resultant service curve h1 is equivalent to the rate-latency function f7 = β3,3,
which is defined in J below:

(f7 =: 3 3&rl) i.11
0 0 0 0 3 6 9 12 15 18 21

4.5.1 Concatenation

Suppose we have two nodes, each offering rate-latency service curves βR0,T0 and
βR1,T1 , respectively. The combined rate-latency curve βR0,T0 	βR1,T1 is the concate-
nation of the two systems; that is: βmin(R0,R1),T0+T1 . To illustrate this, we define the
functions f8 = β3,2 and f9 = β4,1:

f8 =: 3 2&rl
f9 =: 4 1&rl

72 4 Network Calculus

The convolution of the two curves f8 	 f9 yields the result:

min@(f8@s + f9@(t-s)) &> i.11
0 0 0 0 3 6 9 12 15 18 21

The expression above is equivalent to the “concatenated” service curve f7 = β3,3.

4.5.2 Performance Bounds

Given that a flow arriving at a node is f -upper and the node offers a service curve g,
we can compute the bounds for backlog, delay and output. For illustration, we will
use an arrival curve f10 = γ3,3 and service curve g6 = β6,3:

(f10 =: 3 3&af) i.11
0 6 9 12 15 18 21 24 27 30 33

(g6 =: 6 3&rl) i.11
0 0 0 0 6 12 18 24 30 36 42

The respective curves for f10 and g6 are shown in Fig 4.5.

Backlog

The maximum backlog is given by the expression:

max
s≥0

(f(s) − g(s)) (4.35)

We can calculate the backlog bound for f10 and g6 by:

max@(f10@s - g6@s) 10
12

Delay

The expression below gives the delay bound:

d(s) =: min{τ ≥ 0; f(s) ≤ g(s + τ)} (4.36)

The expression below generates a table showing f10(s) and g6(s + τ) for different
values of τ .

4.5 Service Curves 73

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
10

20
30

40

t

0 2 4 6 8 10

0
10

20
30

40

t

0 2 4 6 8 10

0
10

20
30

40

t

tr
af

fic

0 2 4 6 8 10

0
10

20
30

40

t

arrival curve

service curve

Fig. 4.5. Arrival curve γ3,3 and service curve β6,3

tau_z_ =: lhs0
(i.7) (tau; (f10@s ,: g6@(s+tau)))"0 (10)

+-+--------------------------------+
|0|0 6 9 12 15 18 21 24 27 30 33 |
| |0 0 0 0 6 12 18 24 30 36 42 |
+-+--------------------------------+
|1|0 6 9 12 15 18 21 24 27 30 33 |
| |0 0 0 6 12 18 24 30 36 42 48 |
+-+--------------------------------+
|2|0 6 9 12 15 18 21 24 27 30 33 |
| |0 0 6 12 18 24 30 36 42 48 54 |
+-+--------------------------------+
|3|0 6 9 12 15 18 21 24 27 30 33 |
| |0 6 12 18 24 30 36 42 48 54 60 |
+-+--------------------------------+
|4|0 6 9 12 15 18 21 24 27 30 33 |
| |6 12 18 24 30 36 42 48 54 60 66 |
+-+--------------------------------+

74 4 Network Calculus

|5| 0 6 9 12 15 18 21 24 27 30 33|
| |12 18 24 30 36 42 48 54 60 66 72|
+-+--------------------------------+
|6| 0 6 9 12 15 18 21 24 27 30 33|
| |18 24 30 36 42 48 54 60 66 72 78|
+-+--------------------------------+

There are two stages required in calculating the delay bound:

delay =: */@ (f10@s <: g6@(s + tau))"0
(i.7) delay 10

0 0 0 1 1 1 1

The next stage counts the number of zeros returned by delay, which equals the num-
ber of time intervals for which f10(s) ≤ g6(s + τ)

(i.7) +/@:-.@:delay 10
3

Output Bounds

The bound for the output is given by the min-plus deconvolution of the arrival and
service curve where the deconvolution operation is:

(f � g)(t) = max
u≥0

(f(t + u) − g(u)) (4.37)

Note that the min-plus deconvolution operator is not necessarily zero for t < 0. In J,
we can compute the bound for the output:

u_z_ =: i.@>:@[NB. define u
10 max@(f10@(t+u) - g6@u) &> (i:4)

0 0 6 9 12 15 18 21 24

This result is shown in Fig 4.6.

4.6 Streaming Video Example

Consider a streaming video application. Every T = 4 time units, the sender transmits
a frame of size w = 6. We can model this arrival curve with the stair function
g7 = 6u4,4. We define the arrival g7 in J as:

g7 =: 6&*@(4 4&stair)

4.6 Streaming Video Example 75

● ●

●

●

●

●

●

●

●

−4 −2 0 2 4

0
5

10
15

20
25

t

ou
tp

ut

−4 −2 0 2 4

0
5

10
15

20
25

t

Fig. 4.6. Output bound f5 � g5

The arrival sequence output by the sender is therefore:

g7 i.11
0 6 6 6 12 12 12 12 18 18 18

The sender and receiver are connected via a CBR link with R = 3. We use the
function f5 = λ3 defined above to represent the service curve of the link.

A function f ∈ F is a “good” function if it satisfies, according to Le Boudec and
Thiran [36], any of the following:

• f is subadditive and f(0) = 0.

Both f5(0) = 0 and g7(0) = 0:

(f5;g7) 0
0 0

The J expressions below show that f5 and g7 are subadditive:

(f5@(t+s) <: f5@t + f5@s) 10

76 4 Network Calculus

1 1 1 1 1 1 1 1 1 1 1
(g7@(t+s) <: g7@t + g7@s) 10

1 1 1 1 1 1 1 1 1 1 1

• f∗ = f , where f∗ is the subadditive closure.

We show that f5 = f∗
5 :

fc5 =: 0:‘f5‘(min@(f5, $:"0@v + $:"0@(t-v)))@.stop
(f1,: fc5"0) i.11

0 3 6 9 12 15 18 21 24 27 30
0 3 6 9 12 15 18 21 24 27 30

and g4 = g∗4 :

gc4 =: 0:‘g4‘(min@(g4, $:"0@v + $:"0@(t-v)))@.stop
(g4,: gc4"0) i.11

0 6 6 6 12 12 12 12 18 18 18
0 6 6 6 12 12 12 12 18 18 18

• f =: f 	 f .

The J expression below shows that f1 = f1 	 f1:

(f1 ,: min@(f1@s + f1@(t-s))"0) i.11
0 3 6 9 12 15 18 21 24 27 30
0 3 6 9 12 15 18 21 24 27 30

and g3 = g3 	 g3:

(g3,: min@(g3@s + g3@(t-s))"0) i.11
0 7 10 13 16 19 22 25 28 31 34
0 7 10 13 16 19 22 25 28 31 34

• f = f � f , where � is the min-plus deconvolution operator, given by:

f = min
0≤s≤t

(f(t + s) − f(s)) (4.38)

It can be seen that f1 = f1 � f1:

(f1,: max@(f1@(t+s) - f1@s)"0) i.11
0 3 6 9 12 15 18 21 24 27 30
0 3 6 9 12 15 18 21 24 27 30

However, g4 �= g4 � g4:

4.6 Streaming Video Example 77

(g4,: max@(g4@(t+s) - g4@s)) i.11
0 6 6 6 12 12 12 12 18 18 18
18 12 18 18 12 12 18 18 12 18 18

When the sender outputs w = 6 units of data in a single batch (then it is idle until the
next frame is due). However, the CBR link can only process three units of date per
time interval. Thus, the sender’s traffic flow is constrained by f1 as well as g4. The
combined arrival curve is f4 = f1 ⊕ g4, which is given by the J expression:

f4 =: f1 min"0 g4
f4 i.11

0 3 6 6 6 12 12 12 12 18 18

However, f4 does not respresent the tightest bound, as f4(5) ≤ 6 and f4(6) ≤ 12,
whereas f4(6) should be bounded by nine.

We can check the subadditive properties of f4. The result of the J expression below
shows us that f4 is not subadditive:

*/@ (f4@(t+s) <: (f4@t + f4@s)) &> i.11
1 1 1 1 0 1 1 1 0 1 1

The subadditve closure f∗
4 of f4 is given by the J expression:

fc4 =: 0:‘f4‘(min@(f4 , $:"0@v+$:"0@(t-v))) @. stop

Note that $: is the self-reference construct. The resultant subadditive closure f∗
1

yields a tighter bound than f4 itself:

fc4 &> i.11
0 3 6 6 6 9 12 12 12 15 18

We can verify that the subadditive closure f∗
4 is subadditive:

*/@ (fc4"0@(t+s) <: (fc4"0@t + fc4"0@s)) &> i.11

In this particular case, this bound is also given by f1 	 g4:

min@(f1@s + g4@(t-s)) &> i.11
0 3 6 6 6 9 12 12 12 15 18

The functions g4, f1 ⊕ g4 and f1 	 g4 are shown graphically in Fig 4.7.

78 4 Network Calculus

●

● ● ●

● ● ● ●

● ● ●

0 2 4 6 8 10

0
5

10
15

g4
tr

af
fic

0 2 4 6 8 10

0
5

10
15

●

●

● ●

● ● ● ●

● ● ●

0 2 4 6 8 10

0
5

10
15

min(f1,g4)

0 2 4 6 8 10

0
5

10
15

tr
af

fic

●

●

● ●

●

● ● ●

●

● ●

0 2 4 6 8 10

0
5

10
15

f1 * g4

tr
af

fic

0 2 4 6 8 10

0
5

10
15

t

Fig. 4.7. Video frame transmission curve u4,4 (top), the pointwise minimum of λ3 and u4,4

(middle) and the convolution of λ3 and u4,4 (bottom)

4.7 Effective Bandwidth and Equivalent Capacity

The effective bandwidth function provides a means of specifying the bit rate require-
ments of a traffic flow for a given delay bound. For a flow A, expressed as a cumula-
tive function, and a delay bound D, the effective bandwidth is given by:

eD(A) = max
0≤s≤t

A(t) − A(s)
t − s + D

(4.39)

The effective bandwidth for flow A1 can be calculated for various delay bounds:

D =: lhs0 NB. delay D passed as left argument

4.7 Effective Bandwidth and Equivalent Capacity 79

0.0 0.2 0.4 0.6 0.8

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

delay

ef
fe

ct
iv

e
ba

nd
w

id
th

0.0 0.2 0.4 0.6 0.8

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

time scale: 5
time scale 10

Fig. 4.8. Effective bandwidth of A1

(i01 i.6) max@((A1@t - A1@s) % (t - s) + D) &> 10
3 2.94118 2.88462 2.83019 2.77778 2.72727

We can see that, for zero delay, the effective bandwidth is three, which is the mean
rate of A1 over the interval [0, 10]. It diminishes as the tolerable delay bound in-
creases. However, A1 is not constant over t, if we examine the effective bandwidth
over some other time scale (the interval [0, 5] say) the result is different. The effective
bandwidth at this time scale is higher than for the previous example. We can see that
for zero delay tolerance, the effective bandwidth is five, which is equal to the peak
rate of A1:

(i01 i.6) max@((A1@t - A1@s) % (t - s) + D) &> 5
5 4.16667 3.75 3.47826 3.33333 3.2

Figure 4.8 shows the effective bandwidth of the flow A1.

We can compute the effective bandwidth for an arrival curve. For some “good” func-
tion f , the effective bandwidth for delay bound D is:

80 4 Network Calculus

0.0 0.2 0.4 0.6 0.8

2.
5

3.
0

3.
5

4.
0

delay

ef
fe

ct
iv

e
ba

nd
w

id
th

0.0 0.2 0.4 0.6 0.8

2.
5

3.
0

3.
5

4.
0

time scale: 5
time scale: 10

Fig. 4.9. Effective bandwidth of f2 = γ3,1

eD(f) = max
s≥0

f(s)
s + D

(4.40)

For the affine curve f2 = γ3,1 we can compute the effective bandwidth thus:

f2 NB. check the verb definition of f2
3 1&af

(i01 i.6) max@(f2@s % s + D) &> 10
4 3.33333 2.98077 2.92453 2.87037 2.81818

The graph in Fig 4.9 shows the effective bandwidth for f2 = γ3,1 over the time scales
t = 5 and t = 10.

The equivalent capacity specifies the bit rate for a flow, given some backlog bound.
For a flow A and backlog bound Q, the equivalent capacity is given by the equation
below:

eQ(A) = max
0≤s≤t

A(t) − A(s) − Q

t − s
(4.41)

We can compute the equivalent capacity for A1 for a time scale of t = 10 with the J
expression:

4.8 Summary 81

Q =: lhs0 NB. buffer parameter Q given as left argument
(i.6) max@(((A1@t - A1@s) - Q) % t - s) &> 10
3 2.9 2.8 2.7 2.6 2.5

Just as with the effective bandwidth, the equivalent capacity is higher for a time scale
t = 5:

(i.6) max@(((A1@t - A1@s) - B) % t - s) &> 5
5 4 3.5 3.25 3 2.8

The effective capacity for an arrival curve f is given by the equation:

eQ(f) = max
s≥0

f(s) − Q

s
(4.42)

The equivalent capacity for the affine function f2 = γ3,1 is:

(i.6) max@((f2@s - Q) % s) &> 100
4 3 2.99 2.98 2.97 2.96

Figure 4.9 shows effective bandwidth for f2 for various time scales.

4.8 Summary

Insights into traffic flows can be gained from network calculus. Flows are charac-
terised by envelope curves. Service curves can be expressed in a similar way. Then,
using min-plus algebra, delay bounds can be derived for backlog, delay and output.

Effective bandwidth and equivalent capacity provide a way of determining network
resource requirements for flows with determinsitic QoS bounds (in terms of delay
and backlog, respectively). We revisit the topic of effective bandwidth in Chapter 6
for deriving bounds that are probabilistic.

5

Stochastic Processes and Statistical Methods

In this chapter we introduce stochastic processes and the statistical methods for
analysing them. Specifically, we focus on processes with long-memory, which have
been subject to much research in relation to data networks [6, 16] and are considered
to be more representative of network traffic (particularly in packet networks) than tra-
ditional Markovian models. We introduce the concept of short-range and long-range
dependence and how these can be simulated in J.

The long-range dependence property is often accompanied by self-similarity.1 We
will refer to short-range dependent and long-range dependent self-similar processes
as “srd” and “lrd-ss,” respectively. Whereas srd traffic processes tend to smooth
rapidly as we “zoom in,” lrd-ss processes retain their burstiness.

In this chapter, we develop a number of functions in J for generating and analysing
both srd and lrd-ss stochastic processes. We also show how srd and lrd-ss properties
can be identified.

5.1 Random Number Generators

Network analysis makes extensive use of simulation techniques and thus relies heav-
ily on random number generators (RNG). In this section, we develop a number of
functions for (pseudo) random number generation.

The monadic roll primitive ? returns a random integer in the range 0 to n− 1, where
n is the value of the argument. So, for example, the line below returns six random
numbers between 0 and 9:

? 10 10 10 10 10 10
4 1 3 3 0 6
1 The correct term for the property found in network traffic is asymptotically, statistically

self-similar.

84 5 Stochastic Processes and Statistical Methods

Rolling a six-sided die ten times can be simulated by:

>:@? 10 # 6
2 4 3 2 2 4 5 5 4 6

The reader should note that the results of examples involving RNG functions, will
(most likely) differ from those in this book. The function rand, defined below, gen-
erates uniformly distributed random numbers in the range 0 to 231-1:

rand_z_ =: (?@$&2147483646)

The verb is monadic, and its argument specifies how many random numbers to gene-
rate:

rand 5
592937061 1229445466 1065583194 180909904 260315076

Arrays of random numbers can also be generated:

rand 3 2
463322583 1277891113
1922703664 1984820816
1393776341 1706683049

An RNG that generates values in the interval [0, 1) is given by:

runif_z_ =: 2147483647&(%˜)@rand
runif 5

0.120287 0.284969 0.481986 0.188577 0.104365

There are a number of methods for generating Gaussian random variates. Here we
use the convolution method in [52]:

ε =

√
12
n

i=n∑
i=1

Ui(0, 1) −
√

3n (5.1)

where Ui(0, 1) is a uniformly distributed random variate in the interval [0, 1). This
generator exploits the central limit theorm, whereby the sum of a sample of n iid
(independent, identically distributed) random variates (not necessarily Gaussian)
converges to a Normal distribution. The larger the number of variates n, the closer
the approximation to normality.2 The function in Listing 5.1 implements a random
number generator for normal random variates of mean zero and variance one:
2 Clearly there is a trade-off between convergence to normality and the processing cost in-

curred in calculating each random variate.

5.1 Random Number Generators 85

Listing 5.1 Gaussian RNG

cocurrent < ’RNORM’
c1 =: [: _4.24264&+]
c2 =: [: 1.41412&*]
f1 =: [:6&*]
f2 =: runif@f1
g1 =: _6: +/\]
g2 =: c1@c2@g1@f2
cocurrent < ’base’
rnorm_z_ =: g2_RNORM_

Note, we hardcode n = 6. The RNG rnorm is invoked thus:

rnorm 5
0.683747 0.300376 _0.825842 0.347796 1.09792

See [71] for other implementations of Gaussian random number generators. Expo-
nentially distributed random variates [54] are derived:

V = −logeU(0, 1) (5.2)

The corresponding J verb is simply :

rexp_z_ =: (-@ˆ.)@runif

This generates a random variate of mean one, which is confirmed by:

(+/%#) rexp 10000
0.99849

If we wish to generate exponential variates for some arbitrary mean, the RNG is:

load ’libs.ijs’ NB. load pos. params.
exprand_z_ =: lhs1*[:rexp]
(+/%#) 3 exprand 10000 NB. exp variate with mean 3

3.00421

A random variable from a geometric distribution is the length of the sequence until
the first state change in a sequence of Bernoulli trials. The probability distribution is
given by:

P (X = x) = p(1 − p)x x = 0, 1, . . . , 0 < p < 1 (5.3)

Geometric random variates are derived:

Geo =
[

V
loge(1 − p)

]
(5.4)

86 5 Stochastic Processes and Statistical Methods

where V = − loge U is the exponential variate, and Geo is rounded to an inte-
ger value. The J verb for generating a sequence of geometric variates is shown in
Listing 5.2.

Listing 5.2 Geometric RNG

cocurrent <’RGEO’
p =: lhs1
n =: rhs1
f1 =: rexp@n
f2 =: ˆ.@(1:-p)
f3 =: -@f1%f2
f4 =: <.@>:@f3
cocurrent <’base’
rgeo_z_ =: f4_RGEO_

The expectation of the geometric RNG is the reciprocal of the probability; that is,
1/p. Thus:

hd1 =: ’theoretical’;’simulation’
hd1,: (% 0.4); (+/%#) 0.4 rgeo 10000

+-----------+----------+
|theoretical|simulation|
+-----------+----------+
|2.5 |2.498 |
+-----------+----------+

The Pareto distribution is a heavy-tailed distribution:

P (X = x) =
αβα

xα+1
(5.5)

where α and β are the shape and scale parameters, respectively. The mean is given
by:

µ =
αβ

α − 1
(5.6)

The J verb below takes β as the left-hand argument and α as the right-hand argument
and returns the mean of the Pareto distribution for those parameters:

mpar_z_ =: *%<:@]
1 mpar 1.1 1.2 1.5 1.7 2

11 6 3 2.42857 2

The “heavy-tailed” phenomenon is somewhat ubiquitous within the field of packet
data networks [1]. Pareto random variates can be generated from uniformly distrib-
uted variates:

5.2 Statistical Functions 87

Par(α, β) = β

[
1

1 − U(0, 1)

]1/α

(5.7)

The random number generator for Pareto variates is shown in Listing 5.3.

Listing 5.3 Pareto RNG

cocurrent < ’PAR’
alpha =: lhs1
beta =: lhs2
n =: rhs1
f1 =: runif@n
f2 =: %@>:@-@f1
f3 =: %@alpha
f4 =: beta*(f2ˆf3)
cocurrent < ’base’
rpar_z_ =: f4_PAR_

The example below generates a number of random Pareto variates for α = 1.2 and
β = 1, for which the expectation is six. It can be seen that the resultant sample mean
is close:

(+/%#) 1.2 1 rpar 1000000
5.8659

5.2 Statistical Functions

In Listing 5.4 we redefine some of the basic statistical functions introduced earlier in
Section 3.3.

Listing 5.4 Statistical Functions

cocurrent < ’z’
mean =: [: (+/%#)] NB. arithmetic mean
mdev =: -mean NB. deviations from the mean
sqdev =: [: (*:@mdev)] NB. square of deviations
sumsq =: [: (+/@sqdev)] NB. sum of squares
dof =: [: <:@#] NB. degrees of freedom
var =: [: (sumsq % dof)] NB. variance
std =: [: (%: @ var)] NB. standard deviation
cocurrent < ’base’

We can confirm that rnorm returns Gaussian variates with (approximately) zero mean
and a standard deviation of one:

88 5 Stochastic Processes and Statistical Methods

hd2 =: ’mean’;’std’
hd2,: (mean;std) rnorm 10000

+-----------+--------+
|mean |std |
+-----------+--------+
|_0.00818183|0.995637|
+-----------+--------+

Note that most of the functions are enclosed in [: and]. The right verb], which
was introduced in Section 2.4, returns the right-hand argument passed to it. The cap
primitive [: is used to force a function to behave monadically, even if it is used
dyadically. In order to illustrate the difference, we compare the execution of sqdev
with its uncapped equivalent, sqdev2:

sqdev2 =: *:@mdev

Used monadically, they return the same result:

(sqdev;sqdev2) 1 2 3 4
+-------------------+-------------------+
|2.25 0.25 0.25 2.25|2.25 0.25 0.25 2.25|
+-------------------+-------------------+

However, if we execute them both dyadically, we get:

2 (sqdev;sqdev2) 1 2 3 4
+-------------------+----+
|2.25 0.25 0.25 2.25|0.25|
+-------------------+----+

For the verb sqdev2, the presence of the left argument has caused - in dev to behave
as a dyad; thus it performs a subtraction instead of a (monadic) negation. The mean
of the right-hand argument is subtracted from the value of the left-hand argument
(in this case, two). That is, the arithmetic operation 2 − x is performed instead of
xi − x. In the case of sqdev, - is unaffected by the left-hand argument and performs
a monadic negation function due to the [:] encapsulation. This may not seem
important, as running a monadic verb as a dyad makes little sense. However, these
verbs may be used to build other functions which are designed to operate as dyads.
The presence of a left-hand argument will cause any monadic subfunctions to behave
dyadically, resulting in an undesirable change in their intended functionality. In this
example, the - primtive behaves as a subtraction instead of a negation.

5.2.1 Autocovariance and Autocorrelation

The covariance COVXY and correlation CORXY of the two random variables X and
Y are given by:

5.2 Statistical Functions 89

COVXY =
1

n − 1

i=n∑
i=1

(Xi − X)(Yi − Y) (5.8)

CORXY =
COVXY

sXsY
(5.9)

The implementation of the covariance and correlation functions cov and cor, are
shown below:

sp_z_ =: [: +/ *&mdev
cov_z_ =: sp % dof
cor_z_ =: cov % (*&std)

The command-lines below compute the covariance and correlation of the two sets of
(uniformly distributed) random numbers:

X =: rnorm 100
Y =: rnorm 100
hd3 =: ’covariance’;’correlation’
hd3,: Y (cov;cor) X

+----------+-----------+
|covariance|correlation|
+----------+-----------+
|_0.0180343|_0.0166897 |
+----------+-----------+

As expected, the covarianace and correlation are low. The autocovariance c(k) and
autocorrelation coefficient r(k) are defined below:

c(k) =
1
n

t=n∑
t=k+1

(Xt − X)(Xt−k − X) (5.10)

r(k) =
∑t=n

t=k+1(Xt − X)(Xt−k − X)∑t=n
t=k+1(Xt − X)

(5.11)

where k is the lag. The corresponding J verbs for c(k) and r(k) are autocov and
autocor, respectively. These verbs are defined in Listing 5.5.

Listing 5.5 Autocovariance and Autocorrelation

cocurrent < ’ACF’
f1 =: }. ,: -@[}.] NB. separate X(k) and X(k-t)
f2 =: f1-mean NB. sub mean from X(k) and X(k-t)
n =: #@] NB. count no. data items
sp =: +/@(*/@f2) NB. sum of products
cocurrent < ’base’
autocov_z_ =: sp_ACF_ % n_ACF_
autocor_z_ =: sp_ACF_ % sumsq

90 5 Stochastic Processes and Statistical Methods

The autocovariance is the sum of the products (sp) of the deviations, divided by
the length of the times series. The autocorrelation is the sum of the products of the
deviations, divided by the sum of the squares. For example, the autocovariance and
autocorrelation for 10,000 normal deviates at lag k = 1, can be computed:

X =: rand 10000 NB. generate 10000 random numbers
hd4 =: ’autocov’;’autocor’
hd4,: 1 (autocov; autocor) X NB. c(1) and r(1)

+----------+----------+
|autocov |autocor |
+----------+----------+
|5.77953e14|0.00150565|
+----------+----------+

We can apply these functions over a range of lags. Using autocor to illustrate, we
define k as a column list:

]k =: col i. 4 NB. define lags k
0
1
2
3

Giving due consideration to the rank attribute, we execute autocor:

k autocor"1 X NB. compute r(k) for k={0,1,2,3}
1 0.0165008 0.00945115 _0.00588122

The graph in Fig 5.1 shows the autocorrelation coefficients for an iid random variable
with k = 0, 1, . . . , 100. It can be seen that, for lags k > 0, the autocorrelations are
small, which means that serial correlations are negligible. This is what we would
expect for an iid random variable.

5.2.2 Variance Time Plot

A variance time plot shows the rate at which the variance of a time series decays
over different time scales. The aggregated process X(m) is the averaged values of X
grouped into non-overlapping blocks of m; that is:

X(m)(k) = 1/m

km∑
i=(k−1)m+1

X(i) k = 1, 2, . . . (5.12)

The J function below calculates var[X(m)], taking the block size m as the left-hand
argument and X(t) as the right-hand argument:

5.2 Statistical Functions 91

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

r(
x)

Fig. 5.1. Autocorrelation coefficient

cocurrent < ’VARM’
Xt =: rhs0
m =: lhs1

Dividing X(t) into nonoverlapping blocks of m results in T/m blocks. If T mod m =
0, then each block will contain exactly m elements. If, however, T mod m > 0, then
there are �T/m� blocks of m and one block of T mod m. That is, if T is not exactly
divisible by m, then we are left with a runt block at the end of the sequence. In the
event that T is not exactly divisible by m we discard the runt block; thus obtaining,
from X(t), the sequence:

X∗(t) = {X(1),X(2), . . . ,X(τ)} (5.13)

where τ = m × �T/m�. X∗(t) = X(t) if T mod m = 0. In practice, therefore:

X(m)(k) = 1/m

km∑
i=(k−1)m+1

X∗(i) k = 1, 2, . . . (5.14)

This truncation function is performed by the J verbs:

92 5 Stochastic Processes and Statistical Methods

g1 =: (#@Xt) NB. length of X(t)
g2 =: <.@(g1%m) NB. floor(T/m)
g3 =: g2*m NB. m * floor(T/m)
g4 =: (i.@g3) { Xt NB. truncate X(t)

The verb varm returns the variance of X(m):

f1 =: (-@m) +/\ g4 NB. sum values in each block of m
f2 =: f1%m NB. divide by m (the average)
f3 =: var"1@f2 NB. var[Xˆ(m)(i)]
cocurrent < ’base’
varm_z_ =: f3_VARM_

The central limit theorm states that the variance of the sample mean decays as the
reciprocal of the sample size m; that is:

var(X) = σ2m−1 (5.15)

For the purpose of illustration we generate 10,000 Gaussian random variates and find
the variance-time plot:

X =: rnorm 10000
m =: col 10 to 100
vx =: m varm"1 X

We take logs of both sides and calculate the least squares linear regression coeffi-
cients using the matrix divide verb %., thus:

hd5 =: ’intercept’;’slope’
hd5,: ;/ (log10 vx) %. 1,.log10 m

+----------+--------+
|intercept |slope |
+----------+--------+
|0.00887776|_1.02227|
+----------+--------+

The slope is approximately −1, which is what we would expect for an iid random
variable. Figure 5.2 shows the variance time plot on a log-log scale.

5.2.3 Fourier Transform and Power Spectrum

Analysis in the frequency domain also provides valuable insights into the nature of
the time series. The discrete fourier transform is given by:

H(k) =
j=n−1∑

j=0

h(j)e−2πijk/n k = 0, . . . , n − 1 (5.16)

5.2 Statistical Functions 93

The discrete fourier transform is shown in Listing 5.6. Recall that eu is Euler’s for-
mula eiθ = cosθ + isinθ:

Listing 5.6 Discrete Fourier Transform

cocurrent < ’DFT’
h =: rhs0
k =: lhs1
n =: #@h
j =: i.@n NB. j=1,2,..,n-1
eu =: ˆ@j. NB. Euler’s formula
f1 =: -@(+:@o.) @ (j*k%n) NB. -2pi jk/n
f2 =: h * (eu@f1) NB. h*exp(-2pi jk/n)
f3 =: +/@f2
cocurrent < ’z’
dft =: f3_DFT_ NB. in complex form
dftmp =: *.@dft NB. amplitude and phase
dftm =: {."1 @ dft NB. amplitude only
dftp =: {:"1 @ dft NB. phase only
cocurrent < ’base’

Define a square wave and a range of frequencies:

sqw =: 1 1 1 1 _1 _1 _1 _1
freq =: col i.8

Calculate the transform of the square wave, returning the result in amplitude and
phase form:

freq dftmp"1 sqw
0 0

5.22625 _1.1781
0 0

2.16478 _0.392699
0 0

2.16478 0.392699
3.77476e_15 0

5.22625 1.1781

A useful analysis tool for time series is the power spectrum. The power spectrum
derived from the fourier transform of the autocorrelation coefficients:

Sh(k) =
j=n−1∑

j=0

rh(j + 1)e−2πijk/n (5.17)

Thus, for an iid random variable (with a Gaussian distribtution), the power spectrum
can be computed:

94 5 Stochastic Processes and Statistical Methods

X =: rnorm 10000
ax =: (col 1 to 100) autocor"1 X
sx =: (col 1 to 100) dft"1 ax

The graph in Fig 5.3 shows the power spectrum for the time series X . It can be seen
that the power spectrum is (nearly) flat across the frequency range. This is what we
would expect and is indicative of white noise. We can confirm this by taking logs
and calculating the slope of the graph:

hd5,: ;/ (log10 sx) %. 1,.(log10 1 to 100)
+---------+----------+
|intercept|slope |
+---------+----------+
|_3.1693 |_0.0164034|
+---------+----------+

●
●

●

●
●

●

●
●

●●
●

●●●
●

●
●

●●
●●

●●●●●●

●

●

●●●
●●

●

●

●

●●

●●

●●

●

●
●

●

●

●●

●
●

●
●
●
●

●●●
●

●●●
●

●

●●●
●
●

●
●●

●

●
●
●●
●
●●●

●

●

●

●

●
●

●

●

●

1.0 1.2 1.4 1.6 1.8 2.0

−
2.

0
−

1.
8

−
1.

6
−

1.
4

−
1.

2
−

1.
0

log10 m

lo
g1

0
va

ria
nc

e

p

Fig. 5.2. Variance time plot

5.3 Stochastic Processes 95

0.0 0.5 1.0 1.5 2.0

−
4.

5
−

4.
0

−
3.

5
−

3.
0

log10 frequency

lo
g1

0
sp

ec
tr

al
 d

en
si

ty

Fig. 5.3. Spectral density of an iid random variable (white noise)

5.3 Stochastic Processes

In Section 5.1, we developed functions for generating (pseudo) random number
sequences. It is fairly straightforward to use these functions to generate stochastic
processes with independent variates; for example a white noise process:

X(t) = µ + ε(t) (5.18)

Thus, a white noise process, centered around the value of two, can be generated by:

2 + rnorm 5
2.92504 1.9345 _0.5072 2.48281 3.52364

Such processes are uncorrelated in time. Consequently, the autocorrelation coeffi-
cient is r(k) = 0 for k > 0. In this section, we introduce stochastic processes
that exhibit serial correlation, both short-range and long-range. Long-range depen-
dent data is of particular interest to data communications because network traffic has
been shown to exhibit these properties.

96 5 Stochastic Processes and Statistical Methods

Autoregressive (AR) and moving average are two types of process that exhibit
short-range dependence; that is, their autocorrelation coefficients decay exponen-
tially quickly with increased lag:

r(k) ∼ α−k, k > 0 and 0 < α < 1 (5.19)

Only the state of the system in the near past has any significant influence on the
current state. An autogressive process of order p, denoted by AR(p), is given by the
expression:

X(t) =
i=p∑
i=1

φiX(t − i) + ε(t) (5.20)

Similarly, MA(q) is a moving average process of order q:

X(t) = ε(t) +
i=q∑
i=1

θiε(t − i) (5.21)

Both processes can be combined to form an ARMA process:

X(t) = ε(t) +
i=p∑
i=1

φiX(t − i) +
i=q∑
i=1

θiε(t − i) (5.22)

which can be re-written as:
(

1 −
i=p∑
i=1

φiB
i

)
X(t) =

(
1 +

i=q∑
i=1

θiB
i

)
ε(t) (5.23)

where B is the backshift operator, such that Bi = X(t − i). ARMA processes
are special cases of the more generalised autoregressive integrated moving mverage
(ARIMA) processes. The ARIMA(p, d, q) process is an integrated AR(p) and MA(q)
process with a differencing parameter d:

(
1 −

i=p∑
i=1

φiB
i

)
(1 − B)dXt =

(
1 +

i=q∑
i=1

θiB
i

)
εt (5.24)

ARIMA and ARMA are equivalent when d = 0. If 0 < d < 1, then the process is
a fractional ARIMA process and exhibit properties of long-range dependence and
statistcial self-similarity (lrd-ss). The J functions autocor, varm and dft, developed in
Section 5.2, enable us to analyse time series and determine the presence of lrd-ss.

5.3.1 Autoregressive Processes

Define a list x and a list of coefficients φ:

5.3 Stochastic Processes 97

x =: 8.4 5.5 _15.2 14.1 3.8 _10.4 _3.6 _7.4
phi =: 1 0.4 0.2 0.1 NB. coefficients

We must include 1 as the first coefficient. We stitch the random numbers and the
coefficients together to form a matrix to be passed to ar:

]Y =: x ,: (|.phi)
8.4 5.5 7.1 _15.2 14.1 3.8 _10.4 _21.7 _3.6 _7.4
0.1 0.2 0.4 1 0 0 0 0 0 0

A desirable effect of the stitch operation is that the coefficients are padded with zeros,
up to the length of x. When we calculate X(0), we not only need a corresponding
ε(0), but also {X(−1), . . . ,X(−p)}. As we do not have these terms, we simply
substitute {ε(−1), . . . , ε(−p)} instead. We, therefore, use the first p values of x.
Also, x represents ε(t) for t = {0−p, 1−p, . . . , n−p}. The functions below extract
the time series ε(t) and the coefficients:

cocurrent <’AR’
et =: rhs1
coefs =: rhs2

The autoregressive term X(t) is just the inner product of the coefficients and (past)
time series. Thus X(0) can be calculated:

g1 =: coefs ip et
g1 Y_base_

9.96

The power conjunction ˆ: is used to calculate subsequent terms. We need, there-
fore, to output another matrix of the modified time series and the coefficients. The
coefficients need to be shifted forward (in time):

cnext =: 0:,}:@coefs NB. shift
cnext Y_base_ NB. test it

0 0.1 0.2 0.4 1 0 0 0 0 0

The term ε(t) is substituted for X(t); that is, we replace the corresponding value in x
for the newly computed autoregressive term. In order to do this, we need to calculate
the index t which is the current time in the series. The functions below compute two
masks, one that represents the past and present values (of x) and one that is for future
values:

f1 =: *@ coefs
f2 =: |.@f1
f3 =: +/\@f2
mask1 =: |.@(*@f3)
mask2 =: not@mask1

98 5 Stochastic Processes and Statistical Methods

The example below demonstrates the two mask functions:

(mask1,:mask2) Y_base_
1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1

The first four elements of X represent the past and present values of the AR process;
that is X(t),X(t − 1), . . ., while the last six elements represent ε(t + 1), ε(t + 2)
etc. The J verb below implements the AR process:

f5 =: <:@(+/@mask1)
f6 =: +/@mask2
f7 =: f5 {. et NB. -p to (i-1) elements
f8 =: (-@f6) {. et NB.(i+1) to n elements
xnext =: f7,g1,f8 NB. insert u(i)
cocurrent < ’base’
ar_z_ =: xnext_AR_,:cnext_AR_

This example demonstrates the evolution of the function for the first four iterations:

arˆ:(i.4) Y
8.4 5.5 _15.2 14.1 3.8 _10.4 _3.6 _7.4
0.1 0.2 0.4 1 0 0 0 0

8.4 5.5 _15.2 9.96 3.8 _10.4 _3.6 _7.4
0 0.1 0.2 0.4 1 0 0 0

8.4 5.5 _15.2 9.96 5.294 _10.4 _3.6 _7.4
0 0 0.1 0.2 0.4 1 0 0

8.4 5.5 _15.2 9.96 5.294 _7.8104 _3.6 _7.4
0 0 0 0.1 0.2 0.4 1 0

The coefficients “move” forward after each iteration. Successive values of εt are re-
placed with their corresponding autoregressive terms X(t). Running the function for
eight iterations, removing the coefficients and stripping off the history terms gives:

2 4 $ _8 {. rhs1(arˆ:(8) X)
8.4 5.5 _15.2 9.96

5.294 _7.8104 _4.66936 _0.163395

Note that the shape term 2 4 $ is used merely for brevity.

5.3 Stochastic Processes 99

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

0 20 40 60 80 100

0
1

2
3

4
5

6

t

0 20 40 60 80 100

0
1

2
3

4
5

6

t

0 20 40 60 80 100

0
1

2
3

4
5

6

t

3 MA
5 MA

points indicate original time series

Fig. 5.4. Using a moving average for smoothing

5.3.2 Moving Average Processes

A simple moving average function for the basic smoothing of time series data is fairly
straightforward to implement in J:

sma_z_ =: +/\%[

Generate seven exponentially distributed random variates and smooth them with a
3 MA process:

]X =: rexp 6
2.80561 1.5806 0.973211 2.19895 0.870357 0.0316778

3 sma X
1.78647 1.58425 1.34751 1.03366

With the simple MA, each value of X has equal weight, in this case 1/3:

X(3 MA)(i) =:
Xi−1 + Xi + Xi+1

3
(5.25)

100 5 Stochastic Processes and Statistical Methods

The graph in Fig 5.4 shows the 3 MA and 5 MA for time series of exponential distrib-
uted random variables. Weighted moving averages in Equation (5.21) is implemented
in Listing 5.7.

Listing 5.7 Weighted moving average

cocurrent < ’MA’
f1 =: (#@lhs0) +\ rhs0
f2 =: f1 ip [
cocurrent < ’base’
wma_z_ =: f2_MA_

A moving average of order three, MA(3) with θ1 = θ2 = θ3 = 1/3 yields the same
result as the simple 3 MA:

1r3 1r3 1r3 wma X
1.78647 1.58425 1.34751 1.03366

Note the different use of terminology. For a simple smoothing MA, we use q MA,
where q is order. However, for a weighted MA of order q, we use MA(q).

5.3.3 Processes with Long-Memory

Time series with long-memory can be generated using an ARIMA process with a
fractional differencing parameter 0 < d < 1/2. This special case of an ARIMA
process is called a fractional ARIMA process or FARIMA(p, d, q). Furthermore,
properties of long-memory do not require an AR or MA component; that is, a
FARIMA(0, d, 0) process is sufficient to produce long-memory. Thus, we can sim-
plify Equation (5.23):

X(t)(1 − B)d = ε(t) (5.26)

The binomial expansion of (1 − B)d [38] is:

(1 − B)d =
∞∑
k

(
d

k

)
(−1)k · Bk (5.27)

The compution of the coefficients of the binomial expansion
(

d
k

)
is performed by the

! verb, the first five coefficients being:

d =: 0.3 [k =: i.5
k ! d

1 0.3 _0.105 0.0595 _0.0401625

5.3 Stochastic Processes 101

However, what we actually need to find are the coefficients for the expansion of
(1 − B)−d, as we are ultimately computing X(t), where:

X(t) =
ε(t)

(1 − B)d

The J expression below yields the sequence of terms
(

d
k

)
(−1)k:

(_1 ˆ k) * k ! -d
1 0.3 0.195 0.1495 0.123337

The verb fdcoefs in Listing 5.8 computes the terms of the expansion for d and k. The
fractional differencing function fdiff is shown in Listing 5.9.

Listing 5.8 Coefficients

cocurrent < ’FDCOEFS’
f1 =: (i.@]) ! (-@[)
f2 =: _1: ˆ i.@]
cocurrent < ’base’
fdcoefs_z_ =: f1_FDCOEFS_ * f2_FDCOEFS_

Listing 5.9 Fractional Differencing Function

cocurrent < ’ARIMA’
c =: lhs0
nc =: #@c
en =: [: >@{.]
xt =: [: >@{:]
xn =: xt {˜i.@ <:@nc
et =: {.@en
enext =: }.@en
g1 =: c*(et,xn)
g2 =: +/@g1
g3 =: enext;(g2,xt)
cocurrent < ’base’
fdiff_z_ =: g3_ARIMA_

We show how the fractional differencing function works with the power conjunction.
First we compute (the first five) coefficients for (1 − B)−d:

cf =: 0.3 fdcoefs 5

Passing the coefficients as the left-hand argument we call fdiff :

102 5 Stochastic Processes and Statistical Methods

x =: (rnorm 10); rnorm 5
4 4 $ >rhs2 (cf fdiffˆ:(8) x)

_0.786457 _1.72396 _1.32671 0.341925
0.971792 _0.426737 _1.56226 _2.71365
_0.912689 _1.39846 _0.930819 _1.09579
1.39835 _0.786457 _1.72396 _1.32671

As fdiff returns e(t) and X(t) in boxed format, the term >rhs2 extracts X(t) and
unboxes it (again the term 4 4 $ is merely for brevity).

The wrapper function in Listing 5.10 simplifies the execution of fdiff. The explicit
function fd takes the fractional differencing paramter d as the left-hand argument and
the number of coefficients and the length of the time series as the right agruments.

Listing 5.10 Fractional Differencing Wrapper Script

cocurrent < ’z’
fd=: 4 : 0
’nc nx’ =: y.
d =: x.
c =: d fdcoefs nc
e1 =: rnorm nx
e2 =: rnorm nc
|. (i.nx) { >{: (c fdiffˆ:(nx) e1;e2)
)
cocurrent < ’base’

We generate a FARIMA(0, d, 0) time series and analyse it with the statistical tools
developed earlier in this chapter. Processes with long-range dependence and self-
similarity are characterised by the Hurst parameter 0.5 ≤ H ≤ 1, where H →
1 indicates a high degree of long-range dependence and self-similarity. H → 0.5
indicates short-range dependence (autocorrelations that decay exponentially) or even
independence. We show how H can be estimated from both the time (variance time
plot) and frequency (power spectrum) domain.

The relationship between the Hurst parameter and fractional differencing parameter
is H = 1/2+d, so setting d = 0.3 should result in H = 0.8. We generate a sequence
of 10,000 values of a FARIMA(0, 0.3, 0) process with the command:

y =: 0.3 fd 170 10000

There is little point in using more than 170 coefficients as the reciprocal of 171
factorial is very small; so small, for the level of precision in J, it is zero:

%@! 170 171 NB. the reciprocol of 171! is zero
1.3779e_307 0

5.3 Stochastic Processes 103

Nonsummable autocorrelations mean that the autocorrelation coefficients diminish
as a power law:

rk ∼ k−ζ , where k ≥ 1 and 0 < ζ < 1 (5.28)

As we have seen in Section 5.2.2, for independent times series, variances decay as the
reciprocol of the sample size m (consistent with the central limit theorem). However,
for time series that are self-similar, variances decay more slowly (with slope −β):

var[X(m)] = m−β where β < 1 (5.29)

Calculate the variance time plot (for m = 10, 11, . . . , 100):

m =: col 10 to 100
vy =: m varm"1 y

Take logs of var[X(m)] and m and find the slope β using linear regression:

hd5,: ;/ (log10 vx) %. 1,.log10 m
+---------+---------+
|intercept|slope |
+---------+---------+
|0.133737 |_0.431246|
+---------+---------+

Thus β = 0.431246. The Hurst parameter H is related to the slope β:

H = 1 − β/2 (5.30)

Writing the Hurst parameter calculation as a function:

hurst_z_ =: >:@-@-:
hurst 0.431246

0.773587

For a fractional differencing parameter d = 0.3, we would expect a Hurst parameter
of 0.8. From this simulation, we get H ≈ 0.77. Self-similar processes resemble
fractional 1/f noise near the origin. That is, for low frequencies the power spectrum:

S(f) ∼ |f |−γ (5.31)

where γ is fractional (0 < γ < 1). The power spectrum can be computed by:

k =: col 1 to 200
freq =: col 1 to 100
ry =: k autocor"1 y NB. autocorrelation
gamma =: freq dft"1 ry NB. power spectrum

Take logs and find the slope γ:

104 5 Stochastic Processes and Statistical Methods

hd5,: ;/ (log10 gamma) %. 1,.log10 freq
+---------+--------+
|intercept|slope |
+---------+--------+
|_1.68467 |_0.65241|
+---------+--------+

The Hurst parameter is related to the slope γ by:

H =
1 + γ

2
(5.32)

Thus the corresponding J function for finding the Hurst parameter from the slope of
the power spectrum is:

hurst2 =: -:@>:

From the frequency domain, we can confirm that H is close to 0.8:

hurst2 0.65241
0.826205

The graphs in Fig 5.5 show the time series plot for a FARIMA(0,0.3,0) process (top
left), autocorrelation function (top right), power spectrum (bottom left) and variance
time plot (bottom right).

5.4 Queue Analysis

We define network flow Yi = {Yi(t), t = 0, 1, . . .} that, in any time interval t, either
transmits at a rate of one, or is silent. If X(t) is an FARIMA(0, d, 0) process, then:

Yi(t) =
{

0 if X(t) < 0
1 if X(t) ≥ 0 (5.33)

As X(t) is centered around the origin (zero mean), the average transmission rate
of Yi(t) is 1/2. The J script in Listing 5.11 is a traffic simulation for long-range
dependent flows. It generates a number of (FARIMA) flows (using the fractional
differencing verb fd) and returns the aggregate.

5.4 Queue Analysis 105

0 50 150 250

−
2

0
1

2
3

time series

t

x(
t)

0 20 40 60 80 100

0.
1

0.
2

0.
3

0.
4

autocorrelation coefficient

lag

r(
x)

0.0 0.5 1.0 1.5 2.0

−
3.

5
−

2.
5

power spectrum

log10 frequency

lo
g1

0
sp

ec
tr

um

●●●
●●●●●●●●●●●●●●●●●●●●

1.0 1.2 1.4 1.6 1.8 2.0

−
2.

0
−

1.
0

0.
0

variance time plot

log10 m

lo
g1

0
va

ria
nc

e

slope = −1

Fig. 5.5. Time series for an FARIMA(0,0.3,0) process (top left), autocorrelation function (top
right), power spectrum (bottom left) and variance time plot (bottom right)

Listing 5.11 Traffic Simulation Script

cocurrent < ’z’
ts =: 4 : 0
’n l’ =. y.
d =. x.
a =. 0
for_j. i. n
do. a =. a + 0> d fd 170&,l
end.
a
)
cocurrent < ’base’

The function takes a number of arguments, d is the fractional differencing parameter
(passed as a left-hand argument), and n and l are the number of flows and the flow
length (number of time intervals over which we observe the flows), respectively.

106 5 Stochastic Processes and Statistical Methods

Thus, we generate an aggregate traffic flow of 20 flows, over a period of 2000 time
intervals with a fractional differencing parameter d = 0.45, using the command:

y1=:0.45 ts 20 2000

We can use the variance time plot to determine the amount of lrd-ss in the aggregate
process.

vy1 =: m varm"1 y1
hd5,: ;/ (log10 vy1) %. 1,.log10 m

+---------+---------+
|intercept|slope |
+---------+---------+
|0.809115 |_0.476281|
+---------+---------+

hurst 0.476281
0.76186

The Hurst parameter yields a somewhat lower value than expected. Using a fractional
differencing parameter d = 0.45, we would expect a value of H closer to 0.95. How-
ever, multiplexing is known to reduce burstiness [10]. Moreover, this is a somewhat
crude method of generating lrd-ss network traffic. More effective methods will be
discussed later.

As this aggregate flow of traffic arrives at the buffer queue of a work conserving
communications link, the size of the queue q(t) at time t is given by the Lindley
equation [39]. We can, therefore, analyse the queue with:

load ’netcalc.ijs’ NB. load lindley function
q1 =: (12;y1) lindleyˆ:(2000) 0

In order to gain an insight into the effects that lrd-ss traffic have on the backlog, we
need to compare it against a traffic flow derived from a Markovian model (such as a
Poisson process). However there is a simpler (and possibly more effective) method
of comparing lrd-ss with srd traffic. If we take our original lrd-ss time series y1, and
randomly sort it, then the serial correlations in the sequence will be removed. The J
function below randomly sorts a list of values:

rsort_z_ =: {˜ ?˜@#
y2 =: rsort y1

We can check that the variances of a new time series decays as the reciprocol of m
to confirm that we have removed the long-range dependence and self-similarity:

hd5,: ;/ (log10 vy2) %. 1,.log10 m
+---------+--------+

5.4 Queue Analysis 107

|intercept|slope |
+---------+--------+
|0.63591 |_1.04039|
+---------+--------+

The slope of the decay on a log-log plot is close to -1, so the sequence is short-range
dependent (srd). However, note that y1 and y2 contain the same volume of data:

+/ y1,.y2
19786 19786

Consequently, they also have the same mean and peak rate:

hd6 =: ’’;’y1’;’y2’
hd7 =: ’mean’;’max’
hd6, hd7,. 2 2 $;/ (mean, max) y1,.y2

+----+------+------+
| |y1 |y2 |
+----+------+------+
|mean|9.8905|9.8905|
+----+------+------+
|max |18 |18 |
+----+------+------+

The sequences y1 and y2 differ by virtue of the reordering of y2. Analyse the queue
for the srd (randomly sorted) traffic arrival process:

q2 =: (12;y2) lindleyˆ:(2000) 0

It can be seen that the mean and peak queue size of the two arrival processes is
significantly different:

hd6, hd7,. 2 2 $;/ (mean, max) q1,.q2
+----+-------+--------+
| |y1 |y2 |
+----+-------+--------+
|mean|1.28236|0.272364|
+----+-------+--------+
|max |31 |7 |
+----+-------+--------+

Clearly, if we had assumed that the arrival process was Markovian, when it was
actually lrd-ss, we would have underestimated the required buffer queue (setting it
to 7 rather than 31). This would have resulted in a significantly greater number of
dropped packets than expected. The graph in Fig 5.6 clearly shows the difference in
the backlog of y1 and y2. From a capacity planning point of view, the lrd-ss traffic
arrival process needs a faster link to keep the backlog low:

108 5 Stochastic Processes and Statistical Methods

0 500 1000 1500 2000

0
5

15
25

lrd−ss

qu
eu

e
si

ze

0 500 1000 1500 2000

0
5

15
25

srd

t

qu
eu

e
si

ze

Fig. 5.6. Queue analysis for lrd-ss and srd traffic

q3 =: (14;y1) lindleyˆ:(2000) 0
hd7,: (mean;max) q3

+--------+---+
|mean |max|
+--------+---+
|0.045977|6 |
+--------+---+

5.5 Summary

The focus of this chapter was stochastic processes relevant to modeling network
traffic and the statistical methods for analysing them. We introduced the concepts of
short-range dependence and long-range dependence/self-similarity. We developed J
functions for generating time series based upon AR and MA models. These resulted
in srd time series. Time series with lrd-ss properies were generated using fractional
differencing methods (FARIMA), whereby the degree of lrd-ss is determined by the
fractional differencing parameter d.

6

Traffic Modeling and Simulation

Network traffic is often modelled as Markov processes. The problem with these mod-
els is that they do not necessarily capture the statistical properties of actual network
traffic. It has been widely reported that network traffic exhibits fractal properties
[6, 13, 37], that is, they have nonsummable autocorrelations, slowly decaying vari-
ances, spectral densities that obey a power law near the origin, and heavy-tailed
distributions.

In this chapter, we introduce discrete on/off models for simulating traffic sources.
Short-range dependent (srd), and thus Markovian, traffic models can be generated
by sampling on and off periods from geometric distributions. Traffic with long-range
dependence and self-similar (lrd-ss) properties can be generated by replacing the
geometric distribution with a heavy-tailed distribution (such as the Pareto distrib-
ution). J functions are developed for simulating srd traffic with Geo[on]-Geo[off]
times and lrd-ss traffic with Geo[on]-Par[off] times. We use the functions developed
in Chapter 5 to analyse the simulated traffic in this chapter.

Chapter 4 introduced the concept of effective bandwidth, as a means of calculating
resource requirements for flows that expect deterministic delay bounds. Effective
bandwidth measures were derived, either from an arrival sequence or an arrival curve.
In this chapter we revisit effective bandwidth and show how resource requirements
can be derived for probabilistic QoS bounds.

6.1 On/Off Traffic Sources

A common network traffic model is the on/off model. During the on periods a source
transmits at some (constant) peak rate rpeak and is idle during the off periods. Thus,
the transmission rate of the on/off source r(t) at any time t is:

r(t) =
{

rpeak on period
0 off period (6.1)

110 6 Traffic Modeling and Simulation

The probability pon that the system is in an on period is given by:

pon =
r

rpeak
(6.2)

where r is the mean rate. Consequently, the probability of an off period is poff =
1 − pon. A random sequence of binary outcomes S = {Si, i = 1, 2} is a sequence
of Bernoulli trials. For each state Si, there is an associated probability pi = P (X =
Si), and that the probabilities must sum to one. Thus p1 = 1 − p2. The J verb below
generates a sequence of Bernoulli trials for S1 = 0 and S2 = 1: .

load ’stats.ijs’ NB. load statistics functions
rber =: >runif

The right argument specifies the number of trials and the left argument is the prob-
ability p1. An on/off flow with a peak rate rpeak = 1 and mean rate r = 0.25 has a
“on” probability of pon = p1 = 0.25. The J expression below generates a sequence
of 20 Bernoulli trials, representing the on/off periods of a traffic flow:

0.25 rber 20
0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0

Multiple flows can be generated simultaneously. The expression below generates
three flows:

0.3 rber 3 20
1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1
1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0

6.2 Binomial Distribution

If for an aggregate of n Bernoulli trials, k is the number of occurrences of S1, then
the probability of k out n possible outcomes is given by the Binomial distribution
[26]:

P (Y = k) =
k!

k!(n − 1)!
pk(1 − p)n−k (6.3)

where p = P (X = S1) and P (X = S2) = 1−p. The expectation of k is E[k] = np.
Generate 20 flows of 10,000 trials for p = 0.25:

a1 =: +/ 0.25 rber 20 10000
mean a1

4.9856

6.2 Binomial Distribution 111

As we can see, the mean aggregate rate is close to the expected rate np = 5. The
J verb Listing 6.1 calculates the Binomial distribution function given in Equation
(6.3). The function bindist requires the positional parameter functions, therefore we
use the load command to run the libs.ijs script:

load ’libs.ijs’ NB. load pos. param. functions

Listing 6.1 Binomial Distribution

cocurrent < ’BIN’
p =: lhs1
n =: rhs1
k =: i.@>:@n
f1 =: !@n
f2 =: (!@k) * (!@(n-k))
f3 =: f1%f2
f4 =: (pˆk) * (1:-p)ˆ(n-k)
f5 =: f3*f4
cocurrent < ’base’
bindist_z_ =: f5_BIN_

The J expression below computes the binomial distribution for p = 0.25 and n = 20:

5 4 $ 0.25 bindist 20
0.00317121 0.0211414 0.0669478 0.133896

0.189685 0.202331 0.168609 0.112406
0.0608867 0.0270608 0.00992228 0.00300675

0.000751688 0.000154192 2.56987e_5 3.4265e_6
3.56927e_7 2.79942e_8 1.55524e_9 5.45697e_11

The shape term 5 4 $ is merely used for brevity. We can calculate the probability
distribution of a flow. The verb fdist computes the frequency of occurrence of each
member of a data set:

fdist_z_ =: [: +/"1 =/

We calculate the frequencies of each element in a1 and divide them by the tally [:#]
to obtain the probabilities:

5 4 $ (i.20) (fdist%[:#]) a1
0.0027 0.023 0.0674 0.1292
0.1842 0.2078 0.1691 0.1084
0.0645 0.0293 0.0093 0.0039
0.0008 0.0001 0.0003 0

0 0 0 0

112 6 Traffic Modeling and Simulation

The Poisson distribution [26] is a limiting form of the Binomial distribution and is
often used to model packet arrivals and packets being processed. The probability
distribution is given by:

P (X = x) = λx e−λ

x!
(6.4)

Listing 6.2 shows the J verb for computing the Poisson distribution.

Listing 6.2 Poisson Distribution

cocurrent < ’POIS’
x =: rhs0
lm =: lhs1
f1 =: lmˆx
f2 =: ˆ@(-@lm)
f3 =: !@x
f4 =: f1*f2%f3
cocurrent < ’base’
poisdist_z_ =: f4_POIS_

A rate parameter λ is passed to poisdist (instead of a probability p, as with bindist),
where λ = 4 (equivalent to p = 0.25). Thus:

5 4 $ 4 poisdist i.20
0.0183156 0.0732626 0.146525 0.195367
0.195367 0.156293 0.104196 0.0595404

0.0297702 0.0132312 0.00529248 0.00192454
0.000641512 0.000197388 5.63967e_5 1.50391e_5
3.75978e_6 8.84654e_7 1.9659e_7 4.13873e_8

The graph in Fig 6.1 shows the Binomial and Poisson distributions. It also shows the
normalised frequency distribution of the arrival process a1. It can be seen that the
three distributions curves are reasonably alike.

6.3 Markov Models

An on/off source can be modeled as a discrete-time Markov chain (see Fig 6.2). The
probability pij = P (j|i) is the probability that the system transitions from state i
to state j. If we assign state 1 to the on period and state 0 to the off period, then T
represents the state probability matrix:

T =
[

p00 p01

p10 p11

]
=

[
1 − a a

b 1 − b

]
(6.5)

6.3 Markov Models 113

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

x

P
(X

=
x)

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20 Aggregate flow

Binomial
Poisson

Fig. 6.1. Probability distribution of the aggregate of 20 on/off flows compared to Binomial
and Poisson distribution

Note that the transition probabilities with the same originating state must sum to one;
that is, p00 +p01 = 1. The probability of the system being in state i at time k is π

(k)
i .

Thus:
π = πT (6.6)

where limk→∞ π = π(k). The terms π
(k)
0 and π

(k)
1 are given by the expressions:

π
(k)
0 = π

(k−1)
0 p00 + π

(k−1)
1 p10

π
(k)
1 = π

(k−1)
0 p01 + π

(k−1)
1 p11 (6.7)

Solving for π0 and π1 gives:

π0 =
p10

p01 + p10

π1 =
p01

p10 + p01
(6.8)

114 6 Traffic Modeling and Simulation

Fig. 6.2. Discrete time on/off source model

For the purpose of illustration, set the values of the transition matrix T to:

T =
[

0.8 0.2
0.6 0.4

]
(6.9)

Substituting the values of pij , i, j = 1, 2 into the expressions in Equation (6.8) results
in π0 = 0.75 and π1 = 0.25. Assign values to the probability matrix T:

]T =: 0.8 0.2 ,: 0.6 0.4
0.8 0.2
0.6 0.4

Define the matrix multiplication verb:

mm_z_ =: +/@:*

Choose (arbitrary) initial values for π(0), ensuring that π
(0)
0 + π

(0)
1 = 1, then use the

matrix multiply verb and the power conjunction to find π(n):

(col i.10) ; T mmˆ:(i.10) 0.5 0.5
+-+-----------------+
0	0.5 0.5
1	0.7 0.3
2	0.74 0.26
3	0.748 0.252
4	0.7496 0.2504
5	0.74992 0.25008
6	0.749984 0.250016
7	0.749997 0.250003
8	0.749999 0.250001
9	0.75 0.25
+-+-----------------+

By the ninth iteration, the result converges to π0 and π1. The expectation is given by:

6.4 Effective Bandwidth 115

E[X] =
∑1

i=0 Siπi (6.10)

Thus, for Si = i, the expectation can be calculated by the J expression:

(T mmˆ:(10) 0.5 0.5) ip 0 1
0.25

6.4 Effective Bandwidth

For a link with capacity c = 5 and arrivals a1, we can use the Lindley equation to
compute the backlog for an infinite buffer:

load ’netcalc.ijs’ NB. load lindley function
hd1 =: ’mean’;’max’
q1 =: (5;a1) lindleyˆ:(10000) 0
hd1,: (mean;max) q1

+-------+---+
|mean |max|
+-------+---+
|61.54 |163|
+-------+---+

The graph in Fig 6.3 shows how the queue evolves over time. It shows that setting
the capacity close to the mean rate of the aggregate flow results in high levels of
backlog. The link is operating at the very limit of its capacity, and the autocorrela-
tions in Fig 6.4 diminish linearly, indicating that the backlog is nonstationary. The
autocorrelations are computed using:

m =: col i.100
rq =: m autocor"1 q1

Effective bandwidth [31] is a method of determining the amount of network resources
that a flow needs in order to meet a particular QoS. Consider a link with a capacity
c for which we can set the channel access control (CAC) limit ncac; that is, the
maximum number of flows that will be admitted to the link. Setting the CAC limit
to ncac = c/r ensures maximum statistical multiplexing gains. Clearly, ncac = c/r
should not exceed the capacity of the link, as the link will become unstable, resulting
in buffer queues growing without bounds. Nevertheless, when the link operates at
its CAC limit, there will be periods of heavy backlog in the system resulting in long
delays. In short the link can only support a best effort quality of service.

The delay can be bounded by 1/c, if we set ncac = c/rpeak; however, this can lead
to significant underutilisation of the link, particularly if the traffic is bursty Thus we
have a trade-off between link efficiency and QoS. Clearly, we need to set c/rpeak ≤

116 6 Traffic Modeling and Simulation

0 2000 4000 6000 8000 10000

0
50

10
0

15
0

time

qu
eu

e
si

ze

Fig. 6.3. Backlog for 20 on/off sources

ncac ≤ c/r. The aim is to admit as many connections as possible without exceeding
the QoS bounds. For a delay bound D, we define some QoS parameter γ, such that
the delay exceeds D, with probability e−γ . The shape parameter θ is given by:

θ =
γ

D · c (6.11)

The random variable Xj is the load admitted to the link by flow j in some unit time
interval. The effective bandwidth Λ(θ) is given by:

Λ(θ) = θ−1 log EeθXj (6.12)

The effective bandwidth function for deriving probabilistic delay bounds is given in
Listing 6.3.

Listing 6.3 Effective Bandwidth

cocurrent <’EB’
s =: rhs0

6.4 Effective Bandwidth 117

0 10 20 30 40

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

lag

au
to

co
rr

el
at

io
n

Fig. 6.4. Autocorrelation coefficients of queue length

x =: >@lhs1
p =: >@lhs2
f1 =: ˆ@(s */ x)
f2 =: f1 (*"1) p
f3 =: +/"1 @f2
f4 =: (ˆ.@f3) % s
cocurrent <’base’
eb_z_ =: f4_EB_

Generate a Poisson random variable with a mean of two and peak of five:

]rv =: 2 (];poisdist) i.5
+---------+--+
|0 1 2 3 4|0.13533 0.27067 0.27067 0.18044 0.090223|
+---------+--+

For a link with capacity c = 5 and a delay bound D = 0.25, the effective bandwidth
over a range of values of θ = γ/Dc is given by the J expression:

rv eb (1 5 10 20)%0.25*5

118 6 Traffic Modeling and Simulation

0 5 10 15 20 25 30

2.
0

2.
5

3.
0

3.
5

4.
0

gamma

ef
fe

ct
iv

e
ba

nd
w

id
th

0 5 10 15 20 25 30

2.
0

2.
5

3.
0

3.
5

4.
0

0 5 10 15 20 25 30

2.
0

2.
5

3.
0

3.
5

4.
0

0 5 10 15 20 25 30

2.
0

2.
5

3.
0

3.
5

4.
0

D = 0.25
D = 0.3
D=0.35
D=0.4

Fig. 6.5. Effective bandwidth of a Poisson process

2.29689 3.40787 3.6994 3.84966

The graph in Fig 6.5 shows the effective bandwidth for the Poisson process for vari-
ous delay bounds.

Here, we demonstrate how to use effective bandwidth for capacity planning. Suppose
that we have a link of capacity c = 5 and we wish to determine the maximum
number of flows that can be admitted to the link for a given QoS. For the purpose of
illustration, we specify a delay bound D = 0.4. For γ = 2, the probablity that the
delay does not exceed 0.4 with a probability greater than 1 − e−2. The computation
in J is:

(>:@-@ˆ) _2
0.864665

In other words, the link should satisfy the delay bound approximately 86 percent of
time, provided the flows honour their traffic contract. For the purpose of illustration,
we set the mean rate of the flow to r = 0.25 and the peak rate rpeak = 1. In the
example above (Section 6.2), we saw the effects of running 20 such flows (over a
link of capacity c = 5). The delay is the service time (1/c) plus the the time spent

6.4 Effective Bandwidth 119

waiting in the queue. We can calculate the percentage of time for which the delay
bound is exceeded:

delay =: 0.2 * q1 + 1
mean 0.4 <: delay

0.986302

The QoS is maintained less than 2 percent of the time if we provision the link for the
mean rate of the aggregate flow. If we provision the link for the peak rate, then only
five flows can be admitted and each will receive a delay of 0.2, which is well within
our delay bound D = 0.4. If, however, we capacity plan for the effective bandwidth
Λ(θ), then we should be able to admit more flows to the link and still maintain the
required QoS. Given that s = γ/Dc, the effective bandwidth of a flow is:

(0 1;0.75 0.25) eb (2%0.4*5)
0.357374

Dividing the link capacity c by the effective bandwidth Λ(θ) gives the number of
flows:

ceil 5 % 0.357374
13

The link should provide QoS for up to 13 flows. Generate 13 on/off flows and aggre-
gate them:

a2 =: +/ 0.25 rber 13 10000

Use the Lindley equation to calculate the queue size:

q2 =: (5;a2) lindleyˆ:(10000) 0
hd1,: (mean;max) q2

+--------+---+
|mean |max|
+--------+---+
|0.162784|6 |
+--------+---+

Then, we calculate the proportion of times the delay bound (D = 0.4) is exceeded:

delay2 =: (1+q2)%5
mean delay2 ge 0.4

0.10289

The delay is within the required bound approximately 90 percent of the time, thus
QoS is maintained. Let us repeat this experiment for 14 flows:

120 6 Traffic Modeling and Simulation

a3 =: +/ 0.25 rber 14 10000
q3 =: (5;a3) lindleyˆ:(10000) 0
d3 =: (1+q3)%5
mean (0.4 <: d3)

0.156284

Recall that e−2 ≈ 0.135; thus the link cannot quite maintain the desired quality of
service with 14 flows.

6.5 Discrete On/Off Source Models

In this section, we develop J verbs for generating simulations of traffic flows based
upon on/off models. The superposition of flows with heavy-tailed on or off periods
(or on and off periods) results in long-range dependence and self-similarity (lrd-ss)
[55]. Two models are implemented, one with geometrically distributed on and off
times, and one with Pareto distributed on times and geometrically distributed off
times. The former model, Geo[on]-Geo[off], produces a Markovian traffic flow. The
latter model Geo[on]-Par[off], when multiple flows are aggregated, produces a traffic
process that is lrd-ss. The verb definition in Listing 6.4 generates Geo[on]/Geo[off]
traffic flows.

Listing 6.4 Geo[on]-Geo[off]

cocurrent < ’OOGEOGEO’
p01 =: lhs1
p10 =: lhs2
n =: rhs1
f1 =: %@p01 rgeo n
f2 =: %@p10 rgeo n
f3 =: f1,.f2
f4 =: f3 <@# 1:,0:
cocurrent < ’base’
oosrd_z_ =: ;@f4_OOGEOGEO_

The verb oosrd takes two left arguments, which are the respective on and off transi-
tion probabilities. The expression below generates 20 Geo[on]-Geo[off] flows:

x4 =: 1r2 1r6 oosrd"1 (20 1 $ 2000)

We aggregate the flows and take a sample from the middle:

a4 =: (1001 to 3000) { +/ x4

We then find the mean rate, peak rate and standard deviation of the aggregate flow:

6.5 Discrete On/Off Source Models 121

hd2 =: hd1,<’std’
(mean; max; std) a4

+------+---+-------+
|mean |max|std |
+------+---+-------+
|5.0645|12 |1.94582|
+------+---+-------+

We can calculate the frequency distribution of the aggregate flow:

(i.11) ([,: fdist) a4
0 1 2 3 4 5 6 7 8 9 10
5 42 108 298 353 397 345 242 116 63 21

The resultant flow should be short-range dependent (srd). Use the variance-time plot
to confirm this:

m =: col 10 to 100
vx4 =: m varm"1 a4

We determine the slope at which the variance diminishes (with m) on the log-log
scale:

hd3 =: ’intercept’;’slope’
hd3,: ;/ (log10 vx4) %. (1,.log10 m)

+---------+--------+
|intercept|slope |
+---------+--------+
|0.874321 |_1.00042|
+---------+--------+

The variance diminishes at a rate of approximately -1, yielding a Hurst parameter
H ≈ 0.5, confirming that the resultant aggregate traffic process is srd:

hurst 1.00042
0.49979

In Listing 6.5, we define the verb for generating traffic flows with geometrically
distributed on periods and Pareto distributed off periods.

122 6 Traffic Modeling and Simulation

Listing 6.5 Geo[on]-Par[off]

cocurrent < ’OOPARGEO’
p01 =: lhs1
alpha =: lhs2
n =: rhs1
f1 =: %@p01 rgeo n
f2 =: (alpha,1:) (ceil@rpar) n
f3 =: f1,.f2
f4 =: f3 <@# 1:,0:
cocurrent < ’base’
oolrd_z_ =: ;@f4_OOPARGEO_

Generate 20 Geo[on]-Par[off] flows for α = 1.2 and r1 = 8 and then aggregate
them:

x5 =: 1.2 2 oolrd"1 (20 1 $ 2000)
a5 =: (1001 to 3000) { +/ x5
hd2,: (mean; max; std) a5

+-----+---+-------+
|mean |max|std |
+-----+---+-------+
|5.565|13 |2.29726|
+-----+---+-------+

From the variance-time plot, we can see that the traffic process with heavy-tailed off
times yields a value of H ≈ 0.93, which indicates a high degree of lrd-ss:

vx5 =: m varm"1 a5
hd3,: ;/(log10 vx5) %. 1,.log10 m

+---------+---------+
|intercept|slope |
+---------+---------+
|0.55286 |_0.143089|
+---------+---------+

hurst 0.143089
0.928455

We can compare the queue dynamics of the two traffic sources by calculating the
backlog. We assume that the queue is sufficiently large so that there are no packet
drops. We use the Lindley equation thus:

q4 =: (8;a4) lindleyˆ:(2000) 0
q5 =: (8;a5) lindleyˆ:(2000) 0

It can be seen that the backlog for the lrd-ss traffic source is far larger (and more
varied) than for srd traffic:

6.5 Discrete On/Off Source Models 123

0 500 1000 1500 2000

0
2

4
6

8
10

srd

t

qu
eu

e
si

ze
 (

se
gm

en
ts

)

0 500 1000 1500 2000

0
5

10
15

20

lrd−ss

t

0 5 10 15 20

0
5

10
15

20

q4(t+1)

q4
(t

)

0 5 10 15 20

0
5

10
15

20

q5(t+1)

q5
(t

)

Fig. 6.6. The queue dynamics of a srd and lrd-ss traffic processes

hd4 =: ’q4’;’q5’
hd2, (hd4,. (mean; max ; std)"1 q4,:q5)

+--+--------+---+--------+
| |mean |max|std |
+--+--------+---+--------+
|q4|0.132434|11 |0.694948|
+--+--------+---+--------+
|q5|0.681659|22 |2.38015 |
+--+--------+---+--------+

The graphs in Fig 6.6 (top) show the backlog for the srd (q4) and lrd-ss (q5) traffic
processes respectively. Figure 6.6 also shows the backlog as two dimensional phase
diagrams by plotting q4(t) against q4(t+1) (bottom left) and q5(t) against q5(t+1)
(bottom right). The J verb below, when supplied with a list of values y, returns two
lists y(t) and y(t + 1):

(phasediag_z_ =: }: ,: }.) i.10
0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9

124 6 Traffic Modeling and Simulation

The phase diagrams in Fig 6.6 were generated from the expressions:

phase4 =: phasediag q4
phase5 =: phasediag q5

6.6 Summary

On/off models can be used to simulate network traffic. They are based upon the
abstraction that during an on period a source transmits at some constant rate and
is idle during its off period. The superposition of multiple on/off flows with heavy-
tailed on and/or off periods produces lrd-ss traffic.

7

Chaotic Maps

In this chapter, we introduce chaotic maps as a method of simulating on/off net-
work traffic flows. Chaotic systems are systems that are sensitive to initial conditions
(SIC). That is, even a small perturbation in the starting conditions can significantly
affect the long-term behaviour of the system. Chaotic behaviour is modeled using
low-order, nonlinear dynamical maps. These maps are low-order because they are
described by only a few parameters and variables. The parameters of the maps are
fixed, but variables vary over time, giving the maps their dynamical properties.

The evolution of the system over time is described as a trajectory in the (variable)
state space. Short-term changes in state can be found deterministically by some trans-
formation: x(n + 1) = f(x(n)). Long-term behaviour is derived from successive
iterations of the map. The term, fN represents the N th iteration of the map, thus
x(n + 1) = fn(x(0)).

The logistic map is introduced in order to demonstrate chaotic behaviour. We then
introduce two other maps, the Bernoulli shift map and the double intermittency map,
to simulate on/off traffic flows. The Bernoulli shift map generates sequences that are
short-range dependent (srd), while sequences from the double intermittency map are
long-range dependent and self-similar (lrd-ss).

7.1 Analysing Chaotic Behaviour

Consider the logistic map in the expression:

f(x) = 4x(1 − x) (7.1)

For values of x in the interval [0, 1], the map is an inverted parabola with a maxima at
x = 0.5. The expression in Equation (7.1) can be implemented by the J verb below:

f =: 4&*@(* >:@-)

126 7 Chaotic Maps

Which yields the expected inverted parabola:

load ’libs.ijs’
]x =: int01 i.11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f x

0 0.36 0.64 0.84 0.96 1 0.96 0.84 0.64 0.36 0

In its iterative form, the logistic map is:

f(x(n + 1)) = 4x(n)(1 − x(n)) (7.2)

For the purpose of illustration, we select an initial starting value of x(0) = 0.1 and
iterate the map by applying the power conjunction ˆ: to the function f :

10 5 $ fˆ:(i.50) 0.1
0.1 0.36 0.9216 0.289014 0.821939

0.585421 0.970813 0.113339 0.401974 0.961563
0.147837 0.503924 0.999938 0.000246305 0.000984976

0.00393603 0.0156821 0.0617448 0.23173 0.712124
0.820014 0.590364 0.967337 0.126384 0.441645
0.986379 0.053742 0.203415 0.64815 0.912207
0.320342 0.870893 0.449754 0.989902 0.039986
0.153548 0.519885 0.998418 0.00631654 0.0251066
0.0979049 0.353278 0.913891 0.314778 0.862771
0.473588 0.99721 0.0111304 0.0440261 0.168351

The shape term 10 5 $ is used for brevity. Following the sequence x(n) from the
top left to bottom right reveals no obvious pattern. This is illustrated in graphic form
in Fig 7.1, which shows the trajectory of the map. The graph in Fig 7.2 shows the
plot of successive points; that is, x(n + 1) against x(n). It shows how the points
are attracted to the parabola. The expresssion below is a more generalised form of
Equation (7.1):

g(x) = 4ax(1 − x) (7.3)

The expression in Equation (7.3) describes a family of parabolic curves, where the
magnitude of the maxima is determined by 0 ≤ a ≤ 1 and is implemented in J:

g =: lhs1 * [: f]

The parameter a is passed as the left argument, where, for the purpose of this exam-
ple, a = 0.8:

0.8 g x
0 0.288 0.512 0.672 0.768 0.8 0.768 0.672 0.512 0.288 0

7.1 Analysing Chaotic Behaviour 127

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

x(
n)

Fig. 7.1. The trajectory of the logistic map in Equation (7.2)

The graph in Fig 7.3 shows the parabolic curves for various values of a. Note that
g(x) = f(x), when a = 1:

hd1 =: ’g’,:’f’
hd1; 1 (g ,: [: f]) x

+-+---+
|g|0 0.36 0.64 0.84 0.96 1 0.96 0.84 0.64 0.36 0|
|f|0 0.36 0.64 0.84 0.96 1 0.96 0.84 0.64 0.36 0|
+-+---+

The value of parameter a does more that affect the height of the parabola; it also de-
termines the behaviour of the trajectories when the map is applied iteratively. Suces-
sive iterations of the map for a = 0.4 shows that the trajectory increases from its
initial starting value x(0) = 0.1 to a stable state:

10 5 $ 0.4 gˆ:(i.50) 0.1
0.1 0.144 0.197222 0.253321 0.302639

0.337678 0.357843 0.367666 0.37198 0.373778
0.374509 0.374803 0.374921 0.374968 0.374987

128 7 Chaotic Maps

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x(n)

x(
n+

1)

Fig. 7.2. Plot of x(n + 1) against x(n) for the logistic map in Equation (7.2)

0.374995 0.374998 0.374999 0.375 0.375
0.375 0.375 0.375 0.375 0.375
0.375 0.375 0.375 0.375 0.375
0.375 0.375 0.375 0.375 0.375
0.375 0.375 0.375 0.375 0.375
0.375 0.375 0.375 0.375 0.375
0.375 0.375 0.375 0.375 0.375
0.375 0.375 0.375 0.375 0.375

Similarly, a stable state is achieved for a = 0.8, although the (stable) trajectory
cycles between two values:

10 5 $ 0.8 gˆ:(i.50) 0.1
0.1 0.288 0.656179 0.721946 0.642368

0.73514 0.623069 0.751533 0.59754 0.769555
0.567488 0.785425 0.539304 0.795057 0.521413
0.798533 0.51481 0.799298 0.513346 0.79943
0.513093 0.799451 0.513052 0.799455 0.513046
0.799455 0.513045 0.799455 0.513045 0.799455

7.1 Analysing Chaotic Behaviour 129

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

g(
x)

 =
 4

ax
(1

−
x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

a=1.0

a=0.8

a=0.6

a=0.4

a=0.2

Fig. 7.3. Parabolic curves for the logistic map in Equation (7.3) for various values of a

0.513045 0.799455 0.513045 0.799455 0.513045
0.799455 0.513045 0.799455 0.513045 0.799455
0.513045 0.799455 0.513045 0.799455 0.513045
0.799455 0.513045 0.799455 0.513045 0.799455

The graph in Fig 7.3 shows that the trajectories for a = 0.4, 0.7, 0.8 and 0.88 con-
verge to periodic stable states. For a = 0.4 and 0.7, the trajectories are period one,
and for a = 0.8 and a = 0.88 the periods are 2 and 4, respectively. However, as we
have already seen in Fig 7.1, when a = 1, the trajectory does not converge to any
stable (periodic) state. This behaviour is common in dynamical systems, whereby the
stable state undergoes a series of bifurcations in response to a change in conditions
(in this case, the value of a). As the conditions continue to change, the system lapses
into chaos.

Chaotic systems are sensitive to initial conditions (SIC). This is known as the but-
terfly effect [52], whereby small perturbations in the initial conditions can lead to
widely varying results in the long term. In order to examine this, consider the trajec-
tory for a = 0.8. The J expression below returns the results for the 49th and 50th

iteration of the logistic map for x(0) = 0.1, 0.4 and 0.7:

130 7 Chaotic Maps

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a=0.4

x(
n)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a=0.7

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a=0.8

n

x(
n)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a=0.88

n

Fig. 7.4. The trajectories for a = 0.4, 0.7, 0.8, 0.88

hd2 =: ’49’,:’50’
hd2; 0.8 gˆ:(49,50) 0.1 0.4 0.7

+--+--------------------------+
|49|0.799455 0.799455 0.513045|
|50|0.513045 0.513045 0.799455|
+--+--------------------------+

We can see that, for each initial condition, the system converges to the same two-
period state, albeit, for x(0) = 0.7, the trajectory is half a cycle out of phase with the
other two. This is illustrated in the graph in Fig 7.5 which shows the trajectories up
to N = 50 for each starting value x(0) = 0.1, 0.4 and 0.7.

Now, we compare two trajectories for a = 1 with starting conditions x(0) and x(0)+
ε, where ε = 10−6 (in this case) is the perturbation. It is reasonable to expect the
evolution of a system from a perturbed starting condition as relatively small as this
to remain close to the original (nonperturbed) throughout each iteration. Indeed, this
appears to be the case if we run the logistic map (for a = 1) up to N = 10 iterations:

(col i.11); 1 gˆ:(i.11) 0.1 0.100001

7.1 Analysing Chaotic Behaviour 131

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

n

x(
n)

x0=0.1
x0=0.4
x0=0.7

Fig. 7.5. Three trajectories for the initial starting conditions of x(0) = 0.1, 0.4 and 0.7

+--+-----------------+
0	0.1 0.100001
1	0.36 0.360003
2	0.9216 0.921604
3	0.289014 0.289002
4	0.821939 0.821919
5	0.585421 0.585473
6	0.970813 0.970777
7	0.113339 0.113475
8	0.401974 0.402392
9	0.961563 0.961891
10	0.147837 0.146627
+--+-----------------+

It can be seen that, as the map evolves through the iterations of n = 0, 1, . . . 10,
the two trajectories stay close together. However, if we run the map for a further 10
iterations (n = 11, . . . 20), the two trajectories begin to diverge:

(col 11 to 20); 1 gˆ:(11 to 20) 0.1 0.100001

132 7 Chaotic Maps

0 10 20 30 40 50

0.
0

0.
4

0.
8

n

x(
n)

0 10 20 30 40 50

0.
0

0.
4

0.
8

n

x(
n)

0 10 20 30 40 50

0.
0

0.
4

0.
8

n

|f^
N

(x
0)

 −
 f^

N
(x

0+
d0

)|

Fig. 7.6. Two trajectories from the logistic map (top). The difference between the trajectories
(bottom)

+--+-----------------------+
11	0.503924 0.50051
12	0.999938 0.999999
13	0.000246305 4.16748e_6
14	0.000984976 1.66698e_5
15	0.00393603 6.66783e_5
16	0.0156821 0.000266695
17	0.0617448 0.0010665
18	0.23173 0.00426144
19	0.712124 0.0169731
20	0.820014 0.0667401
+--+-----------------------+

This is illustrated graphically in Fig 7.6 (top) for the first N = 50 iterations. The
divergence of the two trajectories becomes apparent at about iteration thirteen. The
bottom graph in Fig 7.6 shows the magnitude of the difference between the two
trajectories according to the expression:

7.1 Analysing Chaotic Behaviour 133

EN = |gN (x(0)) − gN (x(0) + ε)| (7.4)

This leads us to the Lyapunov exponent [17] which serves as a metric for assessing
the rate at which a trajectory, with a perturbed starting value, diverges. The Lyapunov
exponent is given by the expression:

λ(x(0)) =
1
N

lnE(N)/ε (7.5)

The Lyapunov exponent λ(x(0)) for the logistic map (x(0) = 0.1, ε = 10−6 and
N = 20) can be calculated thus:

E1 =: | -/ 1 gˆ:(20) 0.1 0.100001
20 %˜ ln E1%1e_6

0.676609

Systems like the logistic map are highly sensitive to small errors in the initial
conditions. Such systems are chaotic and characterised by a Lyapunov exponent
λ(x(0)) > 0. Nonchaotic systems have Lyapunov exponents λ(x(0)) ≤ 0. Thus
for a = 0.8:

E2 =: | -/ 0.8 gˆ:(20) 0.1 0.100001
20 %˜ ln E2%1e_6

_0.18071

The J verb in Listing 7.1 is an explicit verb definition for calculating the difference
between two trajectories for the logistic map in Equation (7.3).

Listing 7.1 Difference Between Two Trajectories

diff =: 4 : 0
’v0 N a’ =. x. [’x0’ =. rhs1 y.
’xn1 xn2’ =. a gˆ:(N) x0, (x0+v0)
xn1, | xn1-xn2
)

The verb diff takes three arguments which are passed on the left-hand side:

• ε (v0) the value of the perturbation

• N the number of iterations

• a the parameter to the map

The initial value x(0) is passed on the right-hand side. For example:

1e_6 20 0.95 diff 0.1
0.575468 0.00610046

134 7 Chaotic Maps

The function returns two values. The second value is the actual (absolute) difference
between the two trajectories at iteration N = 20 (in this case). The first value is the
value of the last iteration of the map. The reason for returning this value is so that diff
can be run iteratively, using this value as the initial condition for sucessive iterations;
thus:

1e_6 50 1 diffˆ:(i.5) 0.1
0.1 0

0.560037 0.296104
0.372447 0.129492
0.787255 0.75693
0.0873697 0.801794

The lyap script for calculating the Lyapunov exponent is given in Listing 7.2.
Listing 7.2 Script for Calculating the Lyapunov Exponent

lyap =: 4 : 0
’v0 N a R’ =. x. [’x0’ =. y.
df =: rhs2"1 ((v0,N,a) diffˆ:(1 to R) x0)
(ln df%v0)%N
)

The verb lyap calls diff (iterated R times). Running the lyap script, and taking the
mean, gives the following results for various values of a:

mean 1e_6 20 0.4 100 lyap 0.1 NB. a=0.4
_0.913705

mean 1e_6 20 0.5 100 lyap 0.1 NB. a=0.5
__

mean 1e_6 20 0.8 100 lyap 0.1 NB. a=0.8
_0.908953

mean 1e_6 20 0.9 100 lyap 0.1 NB. a=0.9
0.183405

mean 1e_6 20 1 100 lyap 0.1 NB. a=1
0.64713

The graph in Fig 7.7 shows the Lyaponov exponent over a range of values of a. Note
that for a = 0.5, the result is negative infinity (denoted by a double underscore: __).
This is a valid result and it is fortunate that J can deal with infinite values.

7.2 Chaotic Maps for Traffic Sources

In this section, we introduce chaotic maps for modeling on/off traffic sources. The
state of the map determines whether or not the source is in a transmitting state (on) or

7.2 Chaotic Maps for Traffic Sources 135

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
3

−
2

−
1

0

a

Ly
ap

on
v

ex
po

ne
nt

Fig. 7.7. Lyaponov exponent for the logistic map in Equation (7.3) for a range of a and
N = 20

idle state (off). In this section we introduce two maps for this purpose: the Bernoulli
shift and the double intermittency map [17]. Both maps (under the right conditions)
exhibit chaotic behaviour, although the statistical properties of their respective tra-
jectories are significantly different. The double intermittency map can (for certain
parameters) produce lrd-ss sequences, while the Bernoulli shift is srd.

Both maps are one-dimensional, where x(n) evolves in time according to the trans-
formation:

x(n + 1) =
{

f1(x(n)) if 0 < x(n) ≤ d
f2(x(n)) if d < x(n) < 1 (7.6)

In order to model an on/off traffic source model, an associated state variable y(n)
determines if the system is in an active state y(n) = 1 or an idle state y(n) = 0. The
state of the system is governed by the magnitude of x(n). If x(n) exceeds threshold
d, then the system transmits at a peak rate; otherwise it is idle:

y(n) =
{

0 if 0 < x(n) ≤ d
1 if d < x(n) < 1 (7.7)

136 7 Chaotic Maps

Fig. 7.8. Bernoulli shift map

7.2.1 Bernoulli Shift

Bernoulli Shift map (illustrated in Figure 7.8) consists of two linear segments and
takes one parameter d. The evolution of the state variable x(n) is given by the trans-
formation:

x(n + 1) =

⎧⎪⎨
⎪⎩

x(n)
d

if 0 < x(n) ≤ d

x(n) − (d)
1 − d

if d < x(n) < 1
(7.8)

For Bernoulli map verb, the parameter d is passed on the left of the verb and the
initial starting condition x(0) is passed on the right:

cocurrent < ’BMAP’
d =: lhs1
x =: rhs0

The verbs for the two linear segments are given by:

f1 =: x%d
f2 =: (x-d)%(1:-d)

The transformation in Equation (7.8) can be implemented thus:

xnext =: f1 ‘ f2 @. (d<x)

Finally, we define the verb bshift as a reference to xnext:

cocurrent < ’base’
bshift_z_ =: xnext_BMAP_

7.2 Chaotic Maps for Traffic Sources 137

For d = 0.75 and x(0) = 0.1, we generate up to N = 50 iterations of the Bernoulli
shift map with the J expresssion:

10 5 $]x=: 0.75 bshiftˆ:(i.50) 0.1
0.1 0.133333 0.177778 0.237037 0.316049

0.421399 0.561866 0.749154 0.998872 0.995488
0.981954 0.927816 0.711264 0.948351 0.793405
0.173622 0.231496 0.308661 0.411548 0.548731
0.731641 0.975522 0.902087 0.608347 0.81113
0.24452 0.326027 0.434702 0.579603 0.772804

0.0912144 0.121619 0.162159 0.216212 0.288283
0.384377 0.512502 0.683336 0.911115 0.64446
0.85928 0.437122 0.582829 0.777105 0.10842
0.14456 0.192747 0.256995 0.342661 0.456881

Note that the sequence order reads from left to right, top to bottom. The resultant
trajectory for the expression above is shown in Fig 7.9. The associated values of y
are given by:

10 5 $]y=: 0.75 (d_BMAP_ < bshiftˆ:(i.50)) 0.1
0 0 0 0 0
0 0 0 1 1
1 1 0 1 1
0 0 0 0 0
0 1 1 0 1
0 0 0 0 1
0 0 0 0 0
0 0 0 1 0
1 0 0 1 0
0 0 0 0 0

Calculating the Lyaponov exponent for N = 50 yields a positive result, suggest-
ing that the behaviour of the map is sensitive to initial conditions and is, therefore,
chaotic:

dx =: | -/ 0.75 bshiftˆ:(20) &> 0.1 0.100001
20 %˜ ln dx%1e_6

0.617266

While the Bernoulli shift map is chaotic, it is Markovian in nature. That is, the
sequence x(n) is short-range dependent. To verify this, we iterate the map for
N = 10, 000:

x1 =: 0.75 bshiftˆ:(i.10000) 0.1

The autocorrelation coefficient for a range of lags k can be found by:

138 7 Chaotic Maps

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

n

x(
n)

Fig. 7.9. First 50 iterations of x(n) for the Bernoulli shift map, d = 0.75 and x(0) = 0.1

k =: col i.100
rx1 =: k autocor"1 x1

The graph in Fig 7.10 (top) shows that the autocorrelations decay exponentially with
the lag, indicating that x(n) is srd. For further confirmation, we calculate the variance
time plot:

m =: col 10 to 100
vx1 =: m varm"1 x1

The slope is, as expected, approximately −1 (bottom graph in Fig 7.10). Computa-
tion of the Hurst parameter yields a value close to 0.5 indicating srd:

hurst 0.952058
0.523971

Performing a similar analysis on the associated indicator variable y shows that it too,
is srd:

7.2 Chaotic Maps for Traffic Sources 139

0 20 40 60 80 100

0.
0

0.
4

0.
8

autocorrelation

lag

au
to

co
r

●
● ●

● ● ●
● ●

● ●●●●●
●●

●●●
●●●●●●

●
●●●●●●

●●●
●
●●●

●

●●●●●●●●●
●
●●●●●●

●●●●
●●●●●

●
●●
●●
●
●●
●

●

●●●●
●

●
●
●●●●

●●

●
●●

1.0 1.2 1.4 1.6 1.8 2.0

−
2.

4
−

2.
0

−
1.

6

variance−time plot

log10 m

lo
g1

0
V

ar

Fig. 7.10. Autocorrelation cofficient and variance-time plot for a Bernoulli shift map

y1 =: 0.75 < x1
vy1 =: m varm"1 y1
hd3,: ;/ (log10 vy1) %. 1,.log10 m

+---------+--------+
|intercept|slope |
+---------+--------+
|_0.742428|_1.00614|
+---------+--------+

hurst 1.00614
0.49693

One problem with this map that we should mention is the case for d = 0.5. Below
we run the map for N = 60 iterations:

10 6 $ 0.5 bshiftˆ:(i.60) 0.1
0.1 0.2 0.4 0.8 0.6 0.2
0.4 0.8 0.6 0.2 0.4 0.8
0.6 0.2 0.4 0.8 0.6 0.2
0.4 0.8 0.6 0.2 0.4 0.8

140 7 Chaotic Maps

0.6 0.2 0.4 0.8 0.6 0.2
0.4 0.8 0.6 0.2 0.4 0.8
0.6 0.200001 0.400002 0.800003 0.600006 0.200012

0.400024 0.800049 0.600098 0.200195 0.400391 0.800781
0.601562 0.203125 0.40625 0.8125 0.625 0.25

0.5 1 1 1 1 1

We can see that the map converges to one. This is caused by the rounding of the
digital computer and is not a property of the map itself. However, J does provide
a solution to this problem. Instead of using floating point representation for d and
x(0), rationals can be used:

10 6 $ 1r2 bshiftˆ:(i.60) 1r10
1r10 1r5 2r5 4r5 3r5 1r5
2r5 4r5 3r5 1r5 2r5 4r5
3r5 1r5 2r5 4r5 3r5 1r5
2r5 4r5 3r5 1r5 2r5 4r5
3r5 1r5 2r5 4r5 3r5 1r5
2r5 4r5 3r5 1r5 2r5 4r5
3r5 1r5 2r5 4r5 3r5 1r5
2r5 4r5 3r5 1r5 2r5 4r5
3r5 1r5 2r5 4r5 3r5 1r5
2r5 4r5 3r5 1r5 2r5 4r5

It is clear from the example above that the result does not suffer from the round-
ing problem. The graph in Fig 7.11 shows the trajectories for the floating point and
fractional representations of the parameter d and initial condition x(0).

7.2.2 Double Intermittency Map

Replacing the linear segments of the Bernoulli shift map with nonlinear segments
results in a map that can (for certain parametric values) generate long-range depen-
dent, self-similar trajectories. The double intermittency map, shown in Fig 7.12, is
given by the transformation:

x(n + 1) =
{

ε1 + x(n) + c1x(n)m if 0 < x(n) ≤ d
1 − ε2 − (1 − x(n)) − c2(1 − x(n))m if d < x(n) < 1 (7.9)

where:
c1 =

1 − ε1 − d

dm
and c2 = − ε2 − d

(1 − d)m
(7.10)

The parameters d, m, ε1 and ε2 are (as usual) passed on the left of the verb and x(0)
on the right:

7.2 Chaotic Maps for Traffic Sources 141

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

x(
n)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

x(
n)

d=0.5, x0=0.1
d=1r2, x0=1r10

Fig. 7.11. Bernoulli shift map

Fig. 7.12. Double intermittency chaotic map

142 7 Chaotic Maps

cocurrent < ’DIMAP’
d =: lhs1
m =: lhs2
e1 =: lhs3
e2 =: lhs4
x =: rhs1

The J expressions for the intermediate parameters c1 and c2 from Equation (7.10)
are:

c1 =: (>:@-@e1 - d) % d ˆ m
c2 =: -@(e2 - d) % >:@-@d ˆ m

The expressions for the two (nonlinear) segments are given by:

f1 =: e1 + x + c1 * x ˆ m
f2 =: -@e2 + x - c2 * >:@-@x ˆ m

Thus, the transformation in Equation (7.9) is implemented in the same way as for the
Bernoulli shift map:

xnext =: f1 ‘ f2 @. (d<x)

Finally, we define the verb dimap:

cocurrent < ’z’
dimap =: xnext_DIMAP_

We generate up to N = 50 iterations of the double intermittency map for d = 0.5,
m = 2, ε1 = ε2 = 0.0001 and x(0) = 0.1:

10 5 $ 0.75 2 1e_4 1e_4 dimapˆ:(i.50) 0.1
0.1 0.104543 0.109498 0.114925 0.120893

0.127486 0.134806 0.14298 0.152162 0.162548
0.174386 0.187997 0.203798 0.22235 0.244415
0.271054 0.303795 0.344897 0.397844 0.468263
0.565777 0.708089 0.930939 0.873615 0.681861
0.888516 0.739292 0.982207 0.978308 0.972563
0.96343 0.947284 0.913842 0.824675 0.455756
0.548136 0.681718 0.888286 0.738445 0.980803
0.976282 0.969432 0.958121 0.936977 0.889221
0.741875 0.98649 0.9842 0.981105 0.976721

The graph in Fig 7.13 shows the trajectory for the double intermittency map. For
analysis purposes, we run the map for N = 10, 000 iterations:

x2 =: 0.75 2 1e_4 1e_4 dimapˆ:(i.10000) 0.1

7.2 Chaotic Maps for Traffic Sources 143

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

n

x(
n)

Fig. 7.13. First 50 iterations of x(n) for a Double intermittency chaotic map

Find the autocorrelation and variance time plot:

rx2 =: k autocor"1 x2
vx2 =: (col m) varm"1 x2
hd3,: ;/ (log10 vx2) %. 1,.log10 m

+---------+---------+
|intercept|slope |
+---------+---------+
|_0.625252|_0.352365|
+---------+---------+

The graphs in Fig 7.14 show the autocorrelation coefficients (top) and the variance
time plot (bottom). The autocorrelations decay, as a power curve suggesting the tra-
jectory, is long-range dependent. The slope of the variance time plot is greater than
-1 which is an indication of self-similarity. This is confrmed by the computation of
the Hurst parameter:

hurst 0.352365
0.823817

144 7 Chaotic Maps

0 20 40 60 80 100

0.
2

0.
6

1.
0

autocorrelation

lag

au
to

co
r

● ● ● ● ● ● ● ●
● ●●●

●●●●●
●●●●

●●●●●●●●●●

●
●●

●●●●
●●

●
●●●●

●
●
●●●●●

●●●●
●

●●●
●
●●
●
●
●●

●●●
●●
●●●

●●●●●●
●●
●●
●●
●

●
●●

1.0 1.2 1.4 1.6 1.8 2.0

−
1.

35
−

1.
20

−
1.

05

variance−time plot

log10 m

lo
g1

0
V

ar

Fig. 7.14. Autocorrelation cofficient and variance-time plot for a Double intermittency chaotic
map

7.2.3 Queue Dynamics

In this section, we compare the queue dynamics of a work conserving link for srd
and lrd-ss processes, using the results of the Bernoulli shift and double intermittency
maps described above. We can generate the on/off traffic sequence for the double
intermittency map:

y2 =: 0.75 < x2

The on/off sequence y1 for the Bernoulli shift map was generated earlier (subsection
7.2.1). Comparing the average throughput of the respective traffic flows:

hd4 =: ’y1’;’y2’
hd4,: ;/ mean y1,.y2

+------+------+
|y1 |y2 |
+------+------+
|0.2539|0.2342|
+------+------+

7.3 Summary 145

For each traffic source (y1 and y2), we can calculate the backlog for each time interval
n, using the Lindley equation:

q1 =: (0.6;y1) lindleyˆ:(10000) 0
q2 =: (0.6;y2) lindleyˆ:(10000) 0

If we look at the mean backlog, we see that they are relatively similar:

hd5 =: ’q1’;’q2’
hd5,: ;/ mean q1,.q2

+--------+-------+
|q1 |q2 |
+--------+-------+
|0.164164|1.48381|
+--------+-------+

There is a small difference between the backlog q1 and q2, although the mean
throughput for the Bernoulli shift map was slightly higher than for the double interm-
ittency. However, there is a more pronounced difference between the maximum back-
logs of the two flows:

hd5,: ;/ max q1,.q2
+---+----+
|q1 |q2 |
+---+----+
|2.4|23.6|
+---+----+

The maximum backlog q2 is nearly 10 times higher than for q1. The graph in Fig
7.15 shows the evolution of the queue sizes over time. It is clear that the queue
dynamics for the two traffic flows are significantly different. This reinforces the as-
sertion that the capacity planning of network resources should not be based solely
upon first order statistics alone. The degree of lrd-ss has a significant impact on the
performance seen at the buffer queues.

7.3 Summary

In this chapter we have used J to build and analyse chaotic maps. Chaotic behaviour
is determined by a system’s sensitivity to initial conditions. Long-term prediction
of a dynamical system is dependent upon the assumption that two (or more) trajec-
tories that have roughly (but not exactly) the same starting conditions will evolve
in roughly the same way. This assumption is not valid for chaotic systems, where
small perturbations in the starting conditions will result in widely varying outcomes

146 7 Chaotic Maps

0 2000 4000 6000 8000 10000

0
5

10
15

20
25

Bernoulli shift

qu
eu

e
si

ze

0 2000 4000 6000 8000 10000

0
5

10
15

20
25

double intermittency

n

qu
eu

e
si

ze

Fig. 7.15. Backlog for Bernoulli shift and double intermittency map traffic

in the system. The Lyapunov exponent λ(x(0)) provides a means of determining if a
system is chaotic or not.

The Bernoulli shift and double intermittency map are two maps that can be used to
model on/off traffic sources. The Bernoulli shift generates on/off periods that are srd,
whereas the double intermittency map generates lrd-ss sequences.

8

ATM Quality of Service

Traffic flows through an ATM network are characterised by a number of traffic descr-
iptors. The peak cell rate (PCR) is the maximum rate at which a source may submit
cells to the network. The PCR is the reciprocal of the minimum cell spacing T ; thus
PCR = 1/T . Cells that do not exceed the PCR are deemed to be conforming. While
a source may submit conforming cells to the network, the effects of multiplexing
could cause jitter in the cell spacing, resulting in nonconformance of cells as they
propagate through the network. The network defines a cell delay variation tolerance
(CDVT) that allows small bursts over the PCR.

Over a period of time greater than T , the sustained cell rate (SCR) defines the limit
at which conforming cells may enter the network. A flow may be allowed to burst
over the SCR (up-to the PCR). The burst “period” is defined by the maximum burst
size parameter (MBS). The ATM Forum defines the following service categories:

• CBR: Constant bit rate

• VBR: Variable bit rate

• ABR: Available bit rate

• UBR: Unspecified bit rate

The CBR service category is for time-sensitive applications that require a fixed capa-
city, as specified by the PCR. Conforming traffic may burst over the PCR up to
the CDVT. This service category is typically for circuit emulation, voice traffic or
constant bit rate video.

For VBR traffic, conforming traffic may burst over the SCR up to the MBS. Like the
CBR service category, it may burst over the PCR up to the CDVT.

The ABR service category is for traffic sources that can adapt their transmission rates
to the conditions of the network through flow-control methods. As well as a PCR,
the ABR service category also has a Minimum Cell Rate (MCR).

148 8 ATM Quality of Service

The UBR service category is defined by the PCR but there is no guaranteed through-
put. Applications using this service category must have a high tolerance to delay.
QoS is best-effort. In this chapter we focus on CBR and VBR service categories.

8.1 Generic Cell Rate Algorithm

The Generic Cell Rate Algorithm (GCRA) is a theoretical algorithm that determines
whether a flow conforms to its contracted traffic descriptors. Cells that are deemed
nonconforming are either discarded or tagged. Cells that are tagged are marked as
low-priority. They may still pass through the network provided there is no conges-
tion, but will be discarded if there is. In terms of the CBR service category, the
GCRA is a function of two parameters I = 1/PCR and L = CDVT. GCRA(I ,L)
can be implemented by either a virtual scheduling algorithm (VSA) or a leaky bucket
algorithm.

Four parameters are defined for the VBR service category: Ip = 1/PCR, Lp =
CDVT, Is = 1/SCR and Ls = BT. BT is the burst tolerance, and is given by:

BT = (MBS − 1) × (1/SCR − 1/PCR) (8.1)

The J verb for calculating the burst tolerance from the MBS is shown in Listing 8.1.

Listing 8.1 Burst Tolerance

cocurrent < ’BT’
Is =: lhs1
Ip =: lhs2
mbs =: rhs0
f1 =: <:@mbs % Is-Ip
cocurrent < ’base’
burst_z_ =: f1_BT_

The dual virtual scheduling algorithm or the dual leaky bucket algorithm are used to
implement VBR service categories.

8.2 Virtual Scheduling Algorithm and Leaky Bucket Algorithm

The theoretical arrival time (TAT) is the time that is compared to the arrival time
of the next cell ta in order to determine if it is conforming. If the cell arrives before
TAT−L, then it is nonconforming and conforming otherwise. The TAT is initialised
to ta when the first cell arrives. After checking the conformance of each cell, it is set

8.2 Virtual Scheduling Algorithm and Leaky Bucket Algorithm 149

Fig. 8.1. Virtual scheduling algorithm

to ta if the cell has arrived after the TAT, otherwise it is incremented by 1/PCR. The
VSA is shown in Fig 8.1.

We implement the VSA in J. As the VSA and the leaky bucket algorithm (imple-
mented below) share a number of common functions, we define these verbs in Listing
8.2. Listing 8.3 shows the virtual scheduling algorithm.

Listing 8.2 Common Functions for VSA and Leaky Bucket

cocurrent < ’GCRA’
I =: lhs1
L =: lhs2
ta =: >@rhs1 NB. list of arrival times
clist =: >@rhs2 NB. conformance vector
ta1 =: {.@ta NB. 1st element of ta list
tn =: }.@ta NB. tail of ta list
cocurrent < ’base’

Listing 8.3 Virtual Scheduling Algorithm

cocurrent < ’VSA’
TAT =: >@rhs3 NB. Theoretical Arrival Time
g1 =: TAT - L_GCRA_
g2 =: max @ (ta1_GCRA_, TAT) + I_GCRA_
conform =: ta1_GCRA_ < g1
f1 =: tn_GCRA_;(clist_GCRA_,0:);g2 NB. conforming
f2 =: tn_GCRA_;(clist_GCRA_,1:);TAT NB. nonconforming
f3 =: f1 ‘ f2 @. conform
cocurrent < ’z’
vsa_z_ =: f3_VSA_

Generate some test data to demonstrate how the algorithm works. The sequence ta
is the cell arrival times:

150 8 ATM Quality of Service

ta =: 1 6 7 18 20 21

The verb takes the traffic contract parameters, I and L, as left arguments. The right
arguments are a boxed sequence. The first argument is the sequence of cell arrival
times ta. The next argument is a vector (list) of the conformance results. The func-
tion returns zero if a packet is conforming and one if it is nonconforming. It is ini-
tialised to a null list ’’. Conformance results are appended to the list as each cell
is processed. The last argument is the TAT (which is initialised to the arrival time
of the first cell). The example below shows the evolution of the virtual scheduling
algorithm with traffic contract parameters I = 4 and L = 2.

hd1 =: ’’;’ta’;’conform’;’TAT’
hd1, (col i.7) ;"1 (4 2 vsaˆ:(i.7) ta;’’;1)

+-+--------------+-----------+---+
| |ta |conform |TAT|
+-+--------------+-----------+---+
|0|1 6 7 18 20 21| |1 |
+-+--------------+-----------+---+
|1|6 7 18 20 21 |0 |5 |
+-+--------------+-----------+---+
|2|7 18 20 21 |0 0 |10 |
+-+--------------+-----------+---+
|3|18 20 21 |0 0 1 |10 |
+-+--------------+-----------+---+
|4|20 21 |0 0 1 0 |22 |
+-+--------------+-----------+---+
|5|21 |0 0 1 0 0 |26 |
+-+--------------+-----------+---+
|6| |0 0 1 0 0 1|26 |
+-+--------------+-----------+---+

An examination of the last iteration shows that cells three and six were nonconform-
ing. The conformance results can be extracted thus:

conform_z_ =: >@rhs2
conform 4 2 vsaˆ:(6) ta;’’;1

0 0 1 0 0 1

The leaky bucket algorithm defines a bucket with a maximum capacity L that leaks
at a rate of 1/I (the PCR). When a cell arrives, the bucket fills by I . The algorithm
records the occupancy of the bucket B and the last conformance time LCT. A cell is
conforming provided the bucket is not full upon its arrival; that is, B − (ta − LCT)
does not exceed L.

The J verb for the implementation of the leaky bucket algorithm is shown in Listing
8.4 (see Fig 8.2):

8.2 Virtual Scheduling Algorithm and Leaky Bucket Algorithm 151

Fig. 8.2. Leaky-bucket algorithm

Listing 8.4 Leaky Bucket Algorithm

cocurrent < ’LB’
LCT =: >@rhs3
B =: >@rhs4
g1 =: B - (ta1_GCRA_ - LCT)
g2 =: max0@g1 + I_GCRA_
f1 =: tn_GCRA_;(clist_GCRA_,0:);ta1_GCRA_;g2
f2 =: tn_GCRA_;(clist_GCRA_,1:);LCT;B
conform =: g1 > L_GCRA_
f3 =: f1 ‘ f2 @. conform
cocurrent < ’base’
lb_z_ =: f3_LB_

As with the VSA, the traffic contract parameters are passed as left arguments. Fur-
thermore, the first two (boxed) right arguments are the cell arrival times ta and con-
formance results vector (initialised to null). The third argument is the LCT and ini-
tialised to the arrival time of the first cell. The last argument is the bucket occupancy
B, which is initialised to zero. For I = 4 and L = 2; the evolution of the leaky
bucket algorithm is:

hd2 =: ’’;’ta’;’conform’;’LCT’;’B’
hd2, (col i.7) ;"1 (4 2 lbˆ:(i.7) ta;’’;1;0)

+-+--------------+-----------+---+-+
| |ta |conform |LCT|B|
+-+--------------+-----------+---+-+
|0|1 6 7 18 20 21| |1 |0|
+-+--------------+-----------+---+-+
|1|6 7 18 20 21 |0 |1 |4|
+-+--------------+-----------+---+-+
|2|7 18 20 21 |0 0 |6 |4|
+-+--------------+-----------+---+-+
|3|18 20 21 |0 0 1 |6 |4|
+-+--------------+-----------+---+-+

152 8 ATM Quality of Service

|4|20 21 |0 0 1 0 |18 |4|
+-+--------------+-----------+---+-+
|5|21 |0 0 1 0 0 |20 |6|
+-+--------------+-----------+---+-+
|6| |0 0 1 0 0 1|20 |6|
+-+--------------+-----------+---+-+

It can be seen that the results for the conformance of cells are the same as the VSA.

8.2.1 Jitter

We demonstrate how the CDVT can be used to account for cell jitter. Randomly se-
lecting cells to jitter (with a probability of 0.4) by generating a sequence of Bernoulli
trials:

load ’stats.ijs’ NB. load RNGs
]a =: 1r8*(0.4 rber 10)

1r8 1r8 0 0 1r8 0 0 1r8 0 0

We then choose (with a probability of 1/2) to jitter cells positively or negatively:

]b =: *rnorm 10
1 1 _1 _1 1 _1 1 1 1 _1

Note that, the use of RNGs above will yield different results for a and b each time
the command-lines above are issued. In order to replicate the results here, set a and
b explicitly:

a =: 1r8 1r8 0 0 1r8 0 0 1r8 0 0
b =: 1 1 _1 _1 1 _1 1 1 1 _1

The product of the sequence above results in a sequence of “jitter” values that are
added to the sequence of packet times.

]jitter =: a*b
1r8 1r8 0 0 1r8 0 0 1r8 0 0

For a CBR service with PCR=4 cells per unit time, the flow ta is conforming, as the
minimum spacing between cells is 1/4 (time units):

]ta =: +/\ 10 # 1r4
1r4 1r2 3r4 1 5r4 3r2 7r4 2 9r4 5r2

Even with a CDVT = 0, cells are conforming:

8.3 Dual Virtual Scheduling Algorithm and Dual Leaky Bucket 153

Fig. 8.3. Dual VSA

conform 1r4 0 lbˆ:(10) ta;’’;1r4;0
0 0 0 0 0 0 0 0 0 0

Applying jitter reduces the minimum cell spacing to 1/8:

]taj =: ta+jitter
3r8 5r8 3r4 1 11r8 3r2 7r4 17r8 9r4 5r2

min ipa taj
1r8

If we run the leaky bucket algorithm with CDVT = 0 on the jittered cell times, we
get nonconforming cells:

conform 1r4 0 lbˆ:(10) taj;’’;1r8;0
0 0 1 0 0 1 0 0 1 0

However, if we set CDVT = 1/8, then all cells in the (jittered) flow are deemed to
be conforming:

conform 1r4 1r8 lbˆ:(10) taj;’’;1r8;0
0 0 0 0 0 0 0 0 0 0

8.3 Dual Virtual Scheduling Algorithm and Dual Leaky Bucket

For VBR services, the traffic contract parameters are Is, Ip, Ls and Lp. Listing 8.5
shows the common functions for the dual VSA and the dual leaky bucket algorithms.
Listings 8.6 and 8.7 show the J verb definition for the dual VSA (Fig 8.3) and dual
leak-bucket algorithm (Fig 8.4), respectively.

154 8 ATM Quality of Service

Listing 8.5 Common Functions for Dual VSA and Dual Leaky Bucket

cocurrent < ’GCRA’
Is =: lhs1
Ip =: lhs2
Ls =: lhs3
Lp =: lhs4
cocurrent < ’base’

Listing 8.6 Dual Virtual Scheduling Algorithm

cocurrent < ’DVSA’
TATs =: >@rhs3
TATp =: >@rhs4
g1 =: TATs - Ls_GCRA_
g2 =: TATp - Lp_GCRA_
g3 =: min @ (g1,g2)
conform =: ta1_GCRA_ < g3
TATsnext =: max @ (ta1_GCRA_, TATs) + Is_GCRA_
TATpnext =: max @ (ta1_GCRA_, TATp) + Ip_GCRA_
f1 =: tn_GCRA_;(clist_GCRA_,0:);TATsnext;TATpnext
f2 =: tn_GCRA_;(clist_GCRA_,1:);TATs;TATp
f3 =: f1 ‘ f2 @. conform
cocurrent < ’base’
dvsa_z_ =: f3_DVSA_

Arrival times are assigned to the flow ta2 by the J expression:

ta2 =: 1 3 5 6 7 8 10 14 17 20

We run the dual VSA for Is = 4, Ip = 2, Ls = 7, and Lp = 2:

hd3 =: ’ta’;’conform’;’TATs’;’TATp’
hd3, 4 2 7 2 dvsaˆ:(i.11) ta2;’’;1;1

+-----------------------+-------------------+----+----+
|ta |conform |TATs|TATp|
+-----------------------+-------------------+----+----+
|1 3 5 6 7 8 10 14 17 20| |1 |1 |
+-----------------------+-------------------+----+----+
|3 5 6 7 8 10 14 17 20 |0 |5 |3 |
+-----------------------+-------------------+----+----+
|5 6 7 8 10 14 17 20 |0 0 |9 |5 |
+-----------------------+-------------------+----+----+
|6 7 8 10 14 17 20 |0 0 0 |13 |7 |
+-----------------------+-------------------+----+----+

8.4 Analysing Burst Tolerance 155

|7 8 10 14 17 20 |0 0 0 0 |17 |9 |
+-----------------------+-------------------+----+----+
|8 10 14 17 20 |0 0 0 0 1 |17 |9 |
+-----------------------+-------------------+----+----+
|10 14 17 20 |0 0 0 0 1 1 |17 |9 |
+-----------------------+-------------------+----+----+
|14 17 20 |0 0 0 0 1 1 0 |21 |12 |
+-----------------------+-------------------+----+----+
|17 20 |0 0 0 0 1 1 0 0 |25 |16 |
+-----------------------+-------------------+----+----+
|20 |0 0 0 0 1 1 0 0 1 |25 |16 |
+-----------------------+-------------------+----+----+
| |0 0 0 0 1 1 0 0 1 0|29 |22 |
+-----------------------+-------------------+----+----+

Listing 8.7 Dual Leaky bucket

cocurrent < ’DLB’
LCT =: >@rhs3
Bs =: >@rhs4
Bp =: >@rhs5
g1 =: -/@ (Bs,ta1_GCRA_,LCT)
g2 =: -/@ (Bp,ta1_GCRA_,LCT)
g3 =: max0@g1 + Is_GCRA_
g4 =: max0@g2 + Ip_GCRA_
conform =: (g1 > Ls_GCRA_) or g2 > Lp_GCRA_
f1 =: tn_GCRA_;(clist_GCRA_,0:);ta1_GCRA_;g3;g4
f2 =: tn_GCRA_;(clist_GCRA_,1:);LCT;Bs;Bp
f3 =: f1 ‘ f2 @. conform
cocurrent < ’base’
dlb_z_ =: f3_DLB_

Running the dual leaky bucket algorithm on ta2 shows that the conformance results
are the same as the virtual scheduling algorithm:

conform 4 2 7 2 dlbˆ:(10) ta2;’’;1;0;0
0 0 0 0 1 1 0 0 1 0

8.4 Analysing Burst Tolerance

In this section, we analyse the burst tolerance parameter of the GCRA with respect to
the srd and lrd-ss variable bit rate sources. In Section 6.5 we presented a number of
discrete on/off traffic models. These models produced traffic as a number of arrivals

156 8 ATM Quality of Service

Fig. 8.4. Dual leaky bucket

per (discrete) time interval. However, the GCRA requires traffic in the form of a
sequence of cell (or packet) arrival times. Fig 8.5 shows the Markov model for a
continuous on/off source.

Like the discrete Markov model, the source transmits at a constant rate during the
on period and is idle during the off period. However, the time periods are not repre-
sented as discrete time units, but are instead continuous. The lengths of the on and
off periods are determined by the respective transition frequencies a and b. As we
have seen from the discrete models, the superposition of on/off sources with heavy-
tailed distributions leads to lrd-ss traffic. The same applies to continuous models. We
present two J verbs, one for generating srd and the other lrd-ss.

The J verb oosrdc in Listing 8.8 generates cell arrivals times according to exponen-
tially distributed on and off times (Exp[on]-Exp[off]).

Listing 8.8 Exp[on]-Exp[off] Model

cocurrent < ’OOEXPEXP’
recipa =: lhs1 NB. on rate
recipb =: lhs2 NB. off rate
T =: lhs3 NB. packet rate
n =: rhs1 NB. no. on and off times
f1 =: recipa exprand n NB. on duration
f2 =: recipb exprand n NB. off duration
f3 =: (T) max f1
np =: ceil@(f3%T) NB. no. packets
f4 =: np # each T
f5 =: f2 (,˜>) each f4
f6 =: ;@f5
cocurrent < ’base’
oosrdc =: +/\@f6_OOEXPEXP_

8.4 Analysing Burst Tolerance 157

The J verb oolrdc in Listing 8.9 generates cell arrivals times according to exponen-
tially distributed on and Pareto distributed off times (Exp[on]-Par[off]).

Listing 8.9 Exp[on]-Par[off] Model

cocurrent < ’OOEXPPAR’
recipa =: lhs1
alpha =: lhs2
T =: lhs3
n =: rhs1
f1 =: recipa exprand n
f2 =: (alpha,T) (ceil@rpar_z_) n
f3 =: (T) max f1
np =: ceil@(f3%T) NB. no. packets
f4 =: np # each T
f5 =: f2 (,˜>) each f4
f6 =: ;@f5
cocurrent < ’base’
oolrdc =: +/\@f6_OOEXPPAR_

The oosrdc verb takes three left parameters, the transition frequencies of the on and
off periods, and the peak transmission rate (in cells of packets per unit of time). We
generate srd traffic for a = 8, b = 12 and rpeak = 1/2 (thus the mean packet inter-
arrival time is T = 2). We show that the average transmission rate is approximately
0.2, by dividing the number of packets by the difference between the first and last
arrival time:

(#%max) 8 12 2 oosrdc 10000
0.237995

Given the values of the parameters a, b and rpeak we can compute the average trans-
mission rate:

rpeak
a

a + b
=

1
2
× 8

8 + 12
= 0.2 (8.2)

The verb oolrdc takes the same parameters as oosrdc, except for the transition α of
the Pareto distribution.

2 mpar 1.2
12

The mean transmission rate for a = 8, α = 1.2 and rpeak = 1/2 is:

(#%max) 8 1.2 2 oolrdc 10000
0.216951

158 8 ATM Quality of Service

Fig. 8.5. Continuous On/Off source model

Now, we can use these source models to examine the effect of the burst tolerance
(BT) parameter on conformance. We generate five lrd-ss continuous on/off sources
and “aggregate” them by sorting them in ascending order of arrival time. We then
take a sample from the middle of the sequence:

hd4 =: ’min’;’max’
x1 =: sort ; (2 1.2 1) (oolrdc"1) (col 5 # 1000)
hd4,: (min;max) (tal =: (2001 to 12000) { x1)

+-------+-------+
|min |max |
+-------+-------+
|1030.12|6943.56|
+-------+-------+

Similarly, an aggregate of five srd flows is generated:

x2 =: sort ; (2 6 1) (oosrdc"1) (col 5 # 1000)
hd4,: (min;max) (tas =: (2001 to 12000) { x2)

+-------+-------+
|min |max |
+-------+-------+
|606.355|5882.56|
+-------+-------+

Calculate the mean transmission rates of both the lrd-ss flow and srd flow by dividing
the number of cells by the difference between the first and last arrival times:

hd5 =: ’lrd-ss’;’srd’
hd5,: ;/ (#%max-min)"1 tal,:tas

+------+-------+
|lrd-ss|srd |
+------+-------+

8.4 Analysing Burst Tolerance 159

|1.8953|1.69114|
+------+-------+

In order to verify that traffic flows are lrd-ss and srd respectively, the flow is converted
from its cell arrival time form to cells per (unit) time interval:

al =: ipa tal ([: +/ </) (607 to 5881)
as =: ipa tas ([: +/ </) (1031 to 6942)

We can confirm that the lrd-ss traffic process shows a reasonably high degree of
self-similarity, with H ≈ 0.86:

hd6 =: ’intercept’;’slope’
m =: col 10 to 100
vl =: m varm"1 al
hd6,: ;/ (log10 vl) %. 1,.log10 m

+---------+---------+
|intercept|slope |
+---------+---------+
|0.0709503|_0.283643|
+---------+---------+

hurst 0.283643
0.858178

Furthermore, for the srd traffic flow, H ≈ 0.55, indicating that it is indeed short-
range dependent:

vs =: m varm"1 as
hd6,: ;/ (log10 vs) %. 1,.log10 m

+---------+---------+
|intercept|slope |
+---------+---------+
|0.441152 |_0.898582|
+---------+---------+

hurst 0.898582
0.550709

The traffic contract TC1 consists of the set of parameters: Is, Ip, Ls and Lp. These
parameters are assigned values accordingly:

hd7 =: ’Is’;’Ip’;’Ls’;’Lp’
hd7,: ;/TC1 =: 1r3 1r5 0 1r5

+---+---+--+---+
|Is |Ip |Ls|Lp |
+---+---+--+---+
|1r3|1r5|0 |1r5|
+---+---+--+---+

160 8 ATM Quality of Service

Note that, we set the burst tolerance (Ls) to zero. The J expression below computes
the conformance of both flows using the dual leaky bucket algorithm. It is necessary
to initialise ta(0) for each flow to the time of the first packet. The initialisation values
are given by computation of the minimum of x1 and x2 above:

cl1 =: conform TC1 dlbˆ:(10000) tal;’’;606.355;0;0
cs1 =: conform TC1 dlbˆ:(10000) tas;’’;1030.12;0;0

The proportion of nonconforming cells is high for both flows:

hd5,: ;/ mean"1 cl1,:cs1
hd5,: ;/ mean"1 cl1,:cs1

+------+------+
|lrd-ss|srd |
+------+------+
|0.3511|0.3303|
+------+------+

We now examine the effect of the burst tolerance (BT) on cell conformance. Define
a new traffic contract TC2. The parameters Is, Ip, Lp remain the same but Ls is set
to 1/3.

hd7 ,: ;/TC2 =: 1r3 1r5 1r3 1r5
+---+---+---+---+
|Is |Ip |Ls |Lp |
+---+---+---+---+
|1r3|1r5|1r3|1r5|
+---+---+---+---+

We run the dual leaky bucket algorithm for the new traffic contract:

cl2 =: conform TC2 dlbˆ:(10000) tal;’’;606.355;0;0
cs2 =: conform TC2 dlbˆ:(10000) tas;’’;1030.12;0;0

For a nonzero burst tolerance, the proportion of nonconforming cells is reduced for
both flows; however, for the srd flow, the reduction is far more pronounced:

hd5,: ;/ mean"1 cl2,:cs2
+------+-----+
|lrd-ss|srd |
+------+-----+
|0.1805|0.074|
+------+-----+

8.5 Summary 161

8.5 Summary

ATM specifies a number of service categories, which in turn are defined by a number
of traffic descriptors. In this chapter we have focused on two particular service cat-
egories: CBR and VBR. The conformance of traffic flows to either of these service
categories is determined by the Generic Cell Rate Algorihtm (GCRA). Either the
virtual scheduling algorithm (VSA) or leaky bucket algorithm can be used for the
GCRA.

The single VSA or leaky bucket algorithm is used for testing conformance to the
CBR service category, whereas the dual version of the algorithm is used for the VBR
service category.

We generated srd and lrd-ss traffic using a continuous on/off traffic model imple-
mented in J. We analysed the conformance of simulated traffic using the GCRA
(dual leaky bucket). Traffic that is lrd-ss yields higher conformance failure rates over
comparable srd traffic.

9

Congestion Control

Congestion control and avoidance, introduced by Van Jacobson [29] in 1988, has
had a significant effect on the stability of the Internet. The TCP sender maintains a
congestion window that determines the number of unacknowledged segments that it
can deliver to a receiver. When the sender has transmitted an entire window of data,
it must wait until it receives an acknowledgement before it can slide the window
along and release more data into the network. Therefore, the sender’s data rate is
constrained by the reciprocal of the round-trip time delay.

The sender will, however, adjust the congestion window during the course of a ses-
sion. It initialises the congestion window to a low value (e.g., one or two segments)
and increases it each time an acknowledgement is received. In this way, the sender
probes the network for available capacity. When the sender detects congestion in
the network (typically inferred after packet loss), it responds by reducing its conges-
tion window. Having dropped its congestion window (and therefore its transmission
rate), the sender once again starts probing the network. How aggressively the sender
probes the network and how conservatively it responds to congestion is governed by
the algorithm and its parameters.

TCP ensures reliable data delivery by retransmitting unacknowledged segments. The
delay incurred by retransmitting segements is a problem for certain applications,
such as real-time audio and video, where dropped packets are preferred to late pack-
ets. The alternative is to use the UDP (User Datagram Protocol) transport protocol,
but this has no congestion control mechanism at all. However, a number of TCP-
compatible algorithms have been proposed and examined [75] for emerging Internet
transport protocols, such as DCCP (Datagram Congestion Control Protocol) [24].
DCCP is designed for real-time applications, specifically audio, video and online
gaming. There has been a growing interest in the analysis of these algorithms in or-
der to understand, not only how they can provide adequate congestion control for
multimedia applications, but also what effect they have on existing TCP congestion
controlled flows.

164 9 Congestion Control

9.1 A Simple Congestion Control Algorithm

In this section, we present a simple congestion control model based upon the one
introduced in [63]. We consider traffic flows from two sources transmitting over a
bottleneck link of capacity c. We assume that each source j is greedy and transmits
up to the rate of its congestion window w = {wj , j = 1, 2} (per time interval). The
offered load to the communications link at any time t is w1(t) + w2(t).

Congestion occurs when the aggregate transmission rate of the two sources exceeds
the capacity of the link. Since we assume that both sources are greedy, then the
link experiences congestion when w1(t) + w2(t) > c. Icon and Icon are indicator
functions that signal a congestion condition on the link:

Icon =
{

1 if w1(t) + w2(t) > c
0 if w1(t) + w2(t) ≤ c

(9.1)

Icon =
{

1 if w1(t) + w2(t) ≤ c
0 if w1(t) + w2(t) > c

(9.2)

The congestion window for each source j evolves according to the feedback equa-
tion:

wj(t + 1) = wj(t) + αIcon − βIcon (9.3)

Thus, the congestion window is decremented by β in the event of congestion; oth-
erwise it is incremented by α. Here, we present a J verb for this simple congestion
control algorithm. The verb cwnd takes three (static) parameters, c, α and β. The
positional parameter verbs are required, so load in the libs.ijs script:

load ’libs.ijs’

Define c, α and β:

cocurrennt <’CWND’
c =: lhs1 NB. get 1st left parameter
alpha =: lhs2 NB. get 2nd left parameter
beta =: lhs3 NB. get 3rd left parameter

The window size is passed as a right argument:

w =: rhs0

The flows wj are summed and then checked to see if the resulting sum exceeds the
link capacity c. The two mutually exclusive indicator variables Icon and Icon (Incon)
set accordingly:

a =: +/@w NB. aggregate data flow
Icon =: a > c NB. 1 if congestion, 0 otherwise
Incon =: -.@Icon NB. 1 if no congestion, 0 otherwise

9.1 A Simple Congestion Control Algorithm 165

The expression in Equation (9.3) is implemented by the verb:

wnext =: 0.0001&max@(w + (alpha*Incon) - beta*Icon)

We ensure that the window size does not drop below a minimum threshold (set arbi-
trarily to 0.001 in this case). Finally, we define the verb cwnd:

cocurrent <’base’ NB. return to base locale
cwnd_z_ =: wnext_CWND_

We execute the function with parameters c = 1, α = 0.3 and β = 0.4 , and the initial
conditions w1(0) = 0.3 and w2(0) = 0.1:

(col i.5) ; 1 0.3 0.4 cwndˆ:(i.5) 0.3 0.1
+-+-------+
0	0.3 0.1
1	0.6 0.4
2	0.9 0.7
3	0.5 0.3
4	0.8 0.6
+-+-------+

It shows that congestion occurred by iteration two, as both flows reduced their win-
dow size in the next iteration. In this example. while w1 and w2 have different start-
ing points, their parameters (and thus their response to the network conditions) are
the same. However, we can give each flow different parameters by constructing a
parameter matrix:

]P1 =: 1 0.1 0.15 ,. 1 0.2 0.4
1 1

0.1 0.2
0.15 0.4

Here, we set α1 = 0.1, β1 = 0.15, α2 = 0.2 and β2 = 0.4. As the flows share a
common link, then: c1 = c2 = 1. Now, each flow probes the network for capacity
and responds to congestion differently:

(col i.5) ; P1 cwndˆ:(i.5) 0.3 0.1
+-+--------+
0	0.3 0.1
1	0.4 0.3
2	0.5 0.5
3	0.6 0.7
4	0.45 0.3
+-+--------+

166 9 Congestion Control

While the feedback model we developed in Equation (9.3) is for two flows only, we
can, in fact, process an arbitrary number of flows, provided we pass a parameter ma-
trix of the appropriate order and with a corresponding number of initial conditions.
For the purpose of illustration the parameters of the three flows are chosen to be:

]P2 =: 1 0.1 0.15 ,. 1 0.2 0.4 ,. 1 0.3 0.3
1 1 1

0.1 0.2 0.3
0.15 0.4 0.3

No fundamental change to the implementation or execution of cwnd is required:

(col i.5) ; P2 cwndˆ:(i.5) 0.3 0.1 0.2
+-+---------------+
0	0.3 0.1 0.2
1	0.4 0.3 0.5
2	0.25 0.0001 0.2
3	0.35 0.2001 0.5
4	0.2 0.0001 0.2
+-+---------------+

The graph in Fig 9.1 shows the congestion control window (and thus transmission
rate) for all three flows. While this example is somewhat artificial, it does provide
some insight into the effects that the parameters α (how aggressively the network is
probed) and β (how conservative is the response to congestion) have on the allocation
of resources amongst the flows.

This model illustrates the fundamental principles behind Internet congestion con-
trol, as well as introducing how to develop functions in the J programming language.
Actual Internet congestion control algorithms are far more complex than the model
presented here. Furthermore, any flow’s reaction to network conditions is regulated
by its round-trip. A flow with large round-trip times will not increase its window as
rapidly as a flow with small round-trip times. Nor will it respond to congestion as
quickly. With our current model, flows are synchronised; that is, they experience the
same round-trip times and thus respond to network conditions at the same time (in the
next time interval). In the next two sections, we develop models for TCP-compatible
and TCP congestion control algorithms that incorporate a number of enhancements
and improve on this simple example. These models reflect more closely the behav-
iour of the actual Internet congestion control algorithms. They also account for the
variance in round-trip times across different flows.

9.2 Binomial Congestion Control Algorithms

The binomial congestion control algorithm below defines a set of congestion control
algorithms [3, 30, 56]:

9.2 Binomial Congestion Control Algorithms 167

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

cw
nd

flow 1
flow 2
flow 3

Fig. 9.1. Congestion window of three flows sharing a communications link

Increase: wj(t + dRTT) ← wj(t) + α/wj(t)k

Decrease: wj(t + dRTT) ← wj(t) − βwj(t)l (9.4)

The parameters k and l define the nature of window increase and decrease, e.g, k =
0 and l = 1 defines an algorithm with an additive increase and a multiplicative
decrease (AIMD). Other algorithms include multiplicative increase, multiplicative
decrease (MIMD) and additive increase, additive decrease (AIAD). Table 9.1 shows
corresponding values of k and l for various algorithms.

Algorithm k l Increase Decrease
AIMD 0 1 additive multiplicative
MIMD -1 1 multiplicative multiplicative
MIAD -1 0 multiplicative additive
AIAD 0 0 additive additive
IIAD 1 0 inverse additive
SQRT 0.5 0.5 square root square root

Table 9.1. Binomial congestion control algorithms

168 9 Congestion Control

The parameters α and β allow for further control of the increase and decrease terms,
but do not alter the nature of the algorithm. That is, AIMD still increases the window
additively and decreases it multiplicatively, irrespective of the values of α and β.
We use α = 1 and β = 0.5 throughout this chapter. The function wj(t) gives the
congestion window size for the jth flow:

wj(t + dRTTj
) = w�

j (t)Icon + w�
j (t)Icon (9.5)

where dRTTj
is the acknowledgement round-trip time for flow j, w�

j (t) is the win-
dow size increase upon receiving an acknowledgement and w�

j (t) is the window size
decrease in response to congestion, where w�

j (t) and w�
j (t) are given by:

w�
j (t) = wj(t) + α/wj(t)k no congestion

w�
j (t) = wj(t) − βwj(t)l congestion

(9.6)

The aggregate offered load a(t) to the network is the sum of the individual flow
rates in the time interval t. We assume that all flows are greedy and transmit up to
the maximum rate allowed by the congestion window, which we take to be rj(t) =
wj(t)/dRTTj

; thus a(t) is:

a(t) =
j=N∑
j=1

rj(t) (9.7)

In our initial example presented in Section 9.1, the contention resource was a buffer-
less link. A congestion condition occurs when the aggregate flow exceeded the ca-
pacity a(t) > c. Here, we consider a communication link with a buffer queue. We
use the Lindley equation [39] to determine the backlog at the communications link.
The buffer queue is finite, so we drop any traffic that exceeds b:

q(t + 1) = max[b, (a(t + 1) + q() − c)+] (9.8)

The congestion/no congestion indicators Icon and Icon are given by the two expres-
sions below:

Icon =
{

1 if q(t) > b
0 if q(t) ≤ b

(9.9)

Icon =
{

1 if q(t) ≤ b
0 if q(t) > b

(9.10)

The parameters to this function are c, b, α, β , k, l and dRTT (refer to Table 9.2 for
associated mathematical and J terms). These are passed as a left argument and are
processed by the functions:

load ’libs’ijs’ NB. load pos. param verbs
cocurrent <’TCPC’

9.2 Binomial Congestion Control Algorithms 169

Math term J term Comment
c c capacity of the link
b b buffer threshold
α alpha window increase factor
β beta window decrease factor
k k window increase param.
l l window decrease param.

wj(t) w current window of flow j

wj(t + 1) wnext next window of flow j

w�
j (t) wi window increase

w�
j (t) wd window decrease
q(t) q current backlog

q(t + 1) qnext next backlog
nack(t) ack number of acks

nack(t + 1) acknext next number of acks
dRTTj RTT round-trip time for flow j

rj(t) tx current transmission rate
rj(t + 1) txnext next transmission rate

a(t) a aggregate offered load
Icon Icon congestion indicator
Icon Incon no congestion indicator

δssthresh(t) ssthresh current slow-start threshold
δssthresh(t + 1) ssthnext next slow-start threshold

ωflow flow flow control window

Table 9.2. J terms and associated mathematical terms

RTT =: lhs1
c =: lhs2
b =: lhs3
alpha =: lhs4
beta =: lhs5
k =: lhs6
l =: lhs7

The window size w, backlog q, time t and the cumulative number of acknowledge-
ments ack are passed as boxed right arguments:

t =: >@rhs1
w =: >@rhs2
q =: >@rhs3
ack =: >@rhs4
tx =: >@rhs5

170 9 Congestion Control

The aggregate flow (offered load) (a) and backlog (qnext) are calculated, then the
congestion/no congestion indicators (Icon and Icon respectively) are set accordingly
(depending upon whether the backlog exceeds the buffer threshold):

txnext =: w%RTT
a =: +/@txnext NB. aggregate flow
backlog =: max0@(a + q - c) NB. calculate backlog
Incon =: backlog <: b NB. no congestion
Icon =: -.@Incon NB. congestion
qnext =: b <. backlog

For each iteration of the congestion control algorithm, we compute a stair function
nack(t) = �t/dRTT . When nack(t+1) > nack(t), a round-trip time has expired and
an acknowledgement has been received (or at least should have been). The J function
acknext computes nack(t + 1). The indicator function Iack signals that an acknowl-
edgement has arrived or should have arrived. We use this signal to defer the change
in window size, whether it is an increase due to the receipt of an acknowledgement
or a decrease as a result of congestion. The indicator function Inack signals that an
acknowledgement is pending:

acknext =: ceil@(t%RTT) NB. next acknowledgement
tnext =: >:@t NB. increment t
Inak =: ack=acknext NB. waiting for ack
Iack =: -.@Inak NB. ack received

The verbs wi and wd implement the window increase and decrease functions w�
j (t)

and w�
j (t), respectively. We use the ceiling function to ensure that the window sizes

are an integer number of segments:

wi =: ceil@(w + alpha % w ˆ k) NB. window increase
wd =: ceil@(w - beta * w ˆ l) NB. window decrease

The window is increased if there has been no congestion (Icon = 1), though we defer
the change until Iack = 1 (implying an acknowledgement). The window is decreased
if there has been congestion (Icon = 1), and again we use the Iack = 1 condition to
defer the change:

h1 =: (w * Inak) + wi * Iack
h2 =: (w * Inak) + wd * Iack
h3 =: (h1 * Incon) + h2 * Icon

In the event of congestion, Iack = 1 signifies an acknowledgement anniversary.
Furthermore, a flow only decreases its window when Icon = 1 and Iack = 1. This
means that a flow will not always detect a congestion condition. This is not entirely
unrealistic as flows receive congestion feedback from the network when their packets

9.2 Binomial Congestion Control Algorithms 171

are dropped from the buffer queues of the router. In the event of congestion, not all
flows will necessarily have their packets dropped. Also, flows with large round-trip
times will detect congestion events less frequently than flows with shorter round trip
times, and will thus respond less rapidly.

We ensure that the window size is at least one segment. The verb h4 then returns the
boxed results of the next state of the system:

wnext =: max1@h3 NB. window is at least 1 segment
h4 =: tnext ; wnext ; qnext ; acknext ; txnext
cocurrent <’base’

Finally, we define tcpf which simply equates to h4:

tcpf_z_ =: h4_TCPC_

9.2.1 Analysis

We define the matrix P1 and the vector of boxed elements X0 to represent the sta-
tic parameters and initial conditions, respectively. We define the vector dRTT =
{dRTTj

, j = 0, 1, . . .}, where dRTTj
= j + 1:

RTT =: >:@i.10

The other system parameters are the same for all flows: c = 10, b = 5, α = 1,
β = 0.5 k = 0 and l = 1; thus P1 defines the parameters for ten AIMD flows:

hd1=:’RTT’;’c’;’b’;’alpha’;’beta’;’k’;’l’
P1 =: RTT,(10 $ &> 10 5 1 0.5 0 1)
hd1,. ;/ P1

+-----+---------------------------------------+
|RTT |1 2 3 4 5 6 7 8 9 10 |
+-----+---------------------------------------+
|c |10 10 10 10 10 10 10 10 10 10 |
+-----+---------------------------------------+
|b |5 5 5 5 5 5 5 5 5 5 |
+-----+---------------------------------------+
|alpha|1 1 1 1 1 1 1 1 1 1 |
+-----+---------------------------------------+
|beta |0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5|
+-----+---------------------------------------+
|k |0 0 0 0 0 0 0 0 0 0 |
+-----+---------------------------------------+
|l |1 1 1 1 1 1 1 1 1 1 |
+-----+---------------------------------------+

172 9 Congestion Control

For time t = 0, the state conditions are initialised wj(0) = 1, q(0) = 0, nack = 1
and rj(t) = 0 for all j:

X0 =: 0;(;/ 10 $ &> 1 0 1 0)
hd2=:’t’;’w’;’q’;’ack’;’r’
hd2,. X0

+---+-------------------+
|t |0 |
+---+-------------------+
|w |1 1 1 1 1 1 1 1 1 1|
+---+-------------------+
|q |0 0 0 0 0 0 0 0 0 0|
+---+-------------------+
|ack|1 1 1 1 1 1 1 1 1 1|
+---+-------------------+
|r |0 0 0 0 0 0 0 0 0 0|
+---+-------------------+

The J expression below returns the state of the system for the first 200 iterations of
the AIMD algorithm:

S1 =: P1 tcpfˆ:(i.200) X0

We can extract individual state variables; for instance the transmission rate, with:

tput1 =: tx_TCPC_"1 S1

The graph in Fig 9.2 shows the evolution of the transmission rate state variables for
each flow (tput1). We can calculate the mean and peak transmission rate for each
flow. The top plane is the mean transmission rate and the bottom plane is the peak
transmission rate:

load ’stats.ijs’ NB. load stats functions
hd3 =: ’mean’;’max’
hd3,. ;/ 2 2 5 $ (mean, max) tput1

+----+--+
|mean| 3.38 1.4075 1.85167 0.89125 0.556|
| |0.795833 0.305 0.344375 0.490556 0.2445|
+----+--+
|max |8 3.5 5 1.75 1.4 |
| |2 0.714286 0.75 1 0.6 |
+----+--+

We can compute the aggregate throughput on the link by summing across the flows.
We can then derive the mean and peak aggregate throughput:

9.2 Binomial Congestion Control Algorithms 173

agg1 =: +/"1 tput1
hd3,: (mean;max) agg1

+-------+-------+
|mean |max |
+-------+-------+
|10.2667|14.6413|
+-------+-------+

The aggregate throughput represents the offered load to the communications link,
which at times exceeds the capacity of the link. Traffic in excess of the capacity
c = 10 is buffered, while buffered traffic in excess of the maximum queue size b = 5,
is dropped. The graph in Fig 9.3 shows the aggregate throughput (offered load) for
the AIMD algorithm. The backlog state variable is also of interest as it gives us some
insight into the queue dynamics. Not surprisingly, the maximum backlog is five:

q1 =: {."1 q_TCPC_"1 S1
hd3,: (mean; max) q1

+-------+---+
|mean |max|
+-------+---+
|3.24953|5 |
+-------+---+

For the MIMD algorithm, we set k = −1 and l = 1. The parameter matrix P2 is
defined as:

P2 =: RTT,(10 $ &> 10 5 1 0.5 _1 1)

The evolution of the state variables for 200 iterations of the MIMD algorithm is given
below:

S2 =: P2 tcpfˆ:(i.200) X0

The per-flow and aggregate flow throughput are, as with the AIMD algorithm, deri-
ved by:

tput2 =: tx_TCPC_"1 S2 NB. per flow throughput
agg2 =: +/"1 tput2 NB. aggregate throughput

The mean and peak of the aggregate throughput are given by:

hd3,: (mean;max) agg2
+-------+-------+
|mean |max |
+-------+-------+
|11.5196|21.5246|
+-------+-------+

174 9 Congestion Control

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

0 50 100 150 200

0
2

4
6

8

t

th
ro

ug
hp

ut

Fig. 9.2. Ten AIMD flows

The graph in Fig 9.4 shows the aggregate throughput for the MIMD algorithm. It
can be seen that the aggregate throughput peaks are very high. Offered loads like this
will fill the buffer queues quickly, resulting in high levels of traffic loss. It can be
seen that the average queue occupancy for the MIMD algorithm is far higher than
for AIMD and quite near to the peak:

q2 =: {."1 q_TCPC_"1 S2
hd3,: (mean;max) q2

+-------+---+
|mean |max|
+-------+---+
|4.01483|5 |
+-------+---+

For the AIAD algorithm, we set k = 1 and l = 0. The parameter matrix P3 is,
therefore:

P3 =: RTT,(10 $ &> 10 5 1 0.5 0 0)

9.2 Binomial Congestion Control Algorithms 175

0 50 100 150 200

0
5

10
15

t

th
ro

ug
hp

ut

Fig. 9.3. Aggregate AIMD flow

We merely have to repeat the procedure above, using P3 to derive the AIAD per-flow
(tput3) and aggregate throughput (agg3):

S3 =: P3 tcpfˆ:(i.200) X0
tput3 =: tx_TCPC_"1 S3
agg3 =: +/"1 tput3

We summarise the AIMD, MIMD and AIAD results below:

hd4 =: ’’;’AIMD’;’MIMD’;’AIAD’
(mean;max) agg1,.agg2,.agg3

+----+-------+-------+-------+
| |AIMD |MIMD |AIAD |
+----+-------+-------+-------+
|mean|10.2667|11.5196|10.4042|
+----+-------+-------+-------+
|max |14.6413|21.5246|14.6413|
+----+-------+-------+-------+

176 9 Congestion Control

0 50 100 150 200

0
5

10
15

20

t

th
ro

ug
hp

ut

Fig. 9.4. Aggregate MIMD flow

9.3 Model of TCP Congestion Control

There is no single standardised congestion control algorithm for TCP. For one, there
are a number of TCP implementations (for example: Tahoe, Reno NewReno, Ve-
gas, Hybla, BIC, SACK and Westwood), each with a different congestion control
algorithm. Furthermore, there are variations within each implementation (which can
depend on thdepend on the operating system). Tahoe maintains a congestion window
that is increased multiplicatively or additively, depending upon whether the session
is in the slow-start or congestion avoidance phase. In the event of congestion, Tahoe
reduces its congestion window to one segment. For congestion events triggered by
a timeout, both reduce their congestion window to one. In this section, we build a
model of TCP congestion control algorithm (loosely) based on Tahoe, as described
by [63].

TCP has two congestion window increase phases: slow-start and congestion avoid-
ance. A TCP session starts in the slow-start phase, setting the congestion window
to a small value (one segment). The session sends one segment of data. Upon rec-
eiving an acknowledgement, it increases the window size by one and transmits data
up to the new window size (now two segments). It continues to do this until the

9.3 Model of TCP Congestion Control 177

0 50 100 150 200

0
5

10
15

t

th
ro

ug
hp

ut

Fig. 9.5. Aggregate AIAD flow

window exceeds the slow-start threshold, whereupon it enters congestion avoidance.
In congestion avoidance the window increases every dRTTj

. Congestion avoidance
represents an additive increase, whereas slow-start is multiplicative increase. When
congestion occurs, TCP reduces its window back to one segment and initiates slow-
start. However, it also sets the slow-start threshold to half the current window size.
The function ωj(t) gives the TCP congestion window size:

ωj(t + dRTT) = max[ωflow, ω�
j (t)Icon + ω�

j (t)Icon] (9.11)

where ω�
j (t) is the window size increase upon receiving an acknowledgement, and

ω�
j (t) is the window size decrease in response to congestion. With the TCP model

(unlike the TCP-compatible model), the transmission rate is capped by the receiver’s
flow control window ωflow. The respective expressions for ω�

j (t) and ω�
j (t) are:

ω�
j (t) = ωj(t) + α/ωj(t)k no congestion

ω�
j (t) = 1 congestion

(9.12)

If the current window size exceeds the slow-start threshold, the TCP congestion win-
dow undergoes a multiplicative increase; otherwise it undergoes an additive increase.

178 9 Congestion Control

The slow-start and congestion avoidance stages are defined by the value of k:

k =
{

0 ωj(t) ≤ δssthreshj
(t) (slow-start)

−1 ωj(t) > δssthreshj
(t) (congestion avoidance) (9.13)

where δssthreshj
is the value of the slow-start threshold for flow j. The slow-start

threshold is set to half of the current window size, if congestion occurs:

δssthreshj
(t + dRTTj

) = δssthreshj
(t)Icon + ωj(t)Icon/2 (9.14)

The parameters to this function are the link capacity c, the buffer size b, α, the round-
trip time dRTT (RTT) and the receiver flow control window is wflow (flow).

We do not need the window decrease parameters (β and l) as ω�
j (t) = 1. However,

if we wished to implement a Reno version of the TCP congestion control algorithm,
we would need to reinstate them. The window increase parameter k is “hardcoded,”
and is either 1 or 0 depending upon whether it is in slow-start or congestion avoid-
ance phase. We can (re)use some of the functions from the binary congestion control
algorithms verbs; thus we only have to define one new parameter (flow) and one new
state variable (ssthresh):

cocurrent <’TCP’
flow =: lhs6
ssthresh =: >@rhs6

We compute k based upon the current window size relative to the slow-start thresh-
old, and calculate the window increase and decrease:

k =: -@(w_TCPC_ <: ssthresh) NB. slow-start?
wi =: ceil@(w + alpha % w ˆ k)
wd =: 1:

If the current window size is less than or equal to the slow-start threshold, then k =
1 and the window is increased multiplicatively as per slow-start. Otherwise k =
0 and the window increase is additive as per congestion avoidance. Note that we
will still pass the β, even though wd does not use it. We continue to pass β for
two reasons. The first reason is for convenience; the TCP congestion control verb
would need some significant redevelopment, if it was removed. The other reason
is that, for some TCP implementations, such as Reno, when three duplicate acks
are received, instead of setting the congestion control, window to one segment, it is
multiplicatively decreased (typically it is halved) and fast recovery is initiated. With
fast recovery, the algorithm goes straight into congestion avoidance rather than slow-
start. If we were to model this behaviour of TCP congestion control we would need
the parameter β.

If an acknowledgement has been received, we recalculate the window according to
congestion conditions of the network:

9.3 Model of TCP Congestion Control 179

h1 =: (w_TCPC_ * Inak_TCPC_) + wi * Iack_TCPC_
h2 =: (w_TCPC_ * Inak_TCPC_) + wd * Iack_TCPC_
wnext =: (h1 * Incon_TCPC_) + h2 * Icon_TCPC_

If there has been congestion, the slow-start threshold is set to half the current window
size (using the -: primitive). To ensure that it is an integer value and at least one,
ceil and max1 are applied, respectively:

g1 =: ceil@-:@ wnext
g2 =: max1@g1
g3 =: (ssthresh * Inak_TCPC_) + g2 * Iack_TCPC_
ssthnext =: (ssthresh*Incon_TCPC_) + g3 * Icon_TCPC_

In addition to the congestion window advertised by the sender, the TCP receiver
advertises a flow-control window. We, therefore, cap the transmission rate, if the
congestion window exceeds the flow-control window:

h4 =: (flow%RTT_TCPC_) ,: txnext_TCPC_
txnext =: min"2@h4 NB. apply minimum cwnd

Next, we prepare to output the results of the current iteration to be fed back into the
next iteration of the system. We could do this in one step, although we separate it
into multiple lines for brevity:

h5 =: tnext_TCPC_ ; wnext ; qnext_TCPC_
h6 =: acknext_TCPC_ ; txnext_TCPC_ ; ssthnext
h7 =: h5,h6
cocurrent <’base’

Finally, we define tcp:

tcp_z_ =: h7_TCP_

9.3.1 Analysis

If we consider only one flow, we can examine the slow-start and congestion avoid-
ance behaviour of TCP:

(tx_TCPC_"1) 1 10 5 1 0.5 12 tcpˆ:(i.10) 0;1;0;1;0;6
0 1 2 4 8 9 10 11 12 13

We can run the TCP congestion control algorithm for ten flows by setting the para-
meter matrix P4 and initial starting conditions Y0:

180 9 Congestion Control

0 2 4 6 8

0
2

4
6

8
10

12

t

th
ro

ug
hp

ut

Fig. 9.6. The transition of a TCP flow from the slow-start phase (multiplicative increase) to
the congestion avoidance phase (additive increase)

P4 =: RTT , (10 $ &> 10 5 1 0.5 12)
Y0 =: 0 ; (;/ 10 $ &> 1 0 1 0 7)

Then, we compute the aggregate throughput (offered load):

S4 =: P4 tcpˆ:(i.200) Y0
tput4 =: tx_TCPC_"1 S4
agg4 =: +/"1 tput4

The graph in Fig 9.7 shows the aggregate throughput (agg4) for TCP.

Here we analyse the second flow (the flow for which dRTT2 = 2) using the network
calculus methods from Chapter 4. The effective bandwidth algorithm was given in
Equation (4.39). We can, therefore, compute the effective bandwidth of the an indi-
vidual TCP flow by deriving the cumulative arrivals for the flow and expressing them
as a function A:

X =: +/\ rhs1"1 tput4
A =: X&seq

9.4 Summary 181

The effective bandwidth is then given by:

load ’netcalc.ijs’
delay =: (i.20)%5
D =: [NB. pass delay bound as left argument
4 5 $ delay max@((A@t - A@s) % ((t-s) + D)) &> 199

7 5.90909 5.41667 5 4.73684
4.5 4.28571 4.09091 3.92857 3.7931

3.66667 3.54839 3.50123 3.49265 3.48411
3.47561 3.46715 3.45874 3.45036 3.44203

0 50 100 150 200

0
5

10
15

t

th
ro

ug
hp

ut

Fig. 9.7. Aggregate TCP flows

9.4 Summary

In this chapter we used J to develop a number of dynamical feedback systems for
implementing TCP and TCP-compatible congestion control algorithms. This consti-
tutes a closed-loop model of network traffic. We assume all flows are greedy and

182 9 Congestion Control

transmit up to their maximum window size. Binomial congestion control algorithms
represent a family of algorithms. The nature of each algorithm is defined by the
parameters k and l, where k determines how aggressively the network is probed for
capacity and l determines how conservative the response to congestion. We can also
use parameters k and l to control when TCP is in slow-start and when it is in conges-
tion avoidance.

What is interesting about the results from these dynamical feedback systems is that,
while they are deterministic, they yield traffic patterns that appear stochastic.

A

Scripts

Create a startup script user/config/startup.ijs under the directory where
you installed J, (remember to reverse / instead \ if you are using Windows). Any
commands you place in this file will be executed when J starts up. You can create and
edit this file from the J GUI. Select “Edit” and then “Configure” from the drop down
menu. In the categories section select “startup.” You create and edit startup.ijs.

A.1 Scripts from Chapter 3

Listing A.1 Common Functions: libs.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.
NB. Chapter 3: Advanced Programming
NB. Common functions
NB.
NB. Execute script with the command line:
NB. load ’libs.ijs’
NB.

cocurrent < ’z’
max =: >./ NB. max(x)
max0 =: 0&max NB. max(0,x)
max1 =: 1&max NB. max(1,x)
min =: <./ NB. min(x)
ceil =: <.
floor =: >.

184 A Scripts

ip =: +/ .* NB. inner product

ge =: >+.= NB. greater than or equal to
le =: <+.= NB. less than or equal to

log10 =: 10&ˆ. NB. log10
log2 =: 2&ˆ. NB. log2
ln =: [:ˆ.] NB. natural log

col =: ,."2 NB. "columnize" list

for =: @i.
ei =: (}:@(-@i.@-)),i. NB. -(x-1)..0..(x-1)

rsort =: {˜ ?˜@# NB. random sort
cocurrent < ’base’

cocurrent < ’range’
f1 =: -.&i.˜ ,] NB. +lhs to +rhs
NB. f2 =: -@(}:@i.@<:@[) , >:@i.@]
f2 =: -@(i.@<:@[) ,>:@i.@]
select =: 0&>@[NB. is left arg -ve?
cocurrent < ’base’

to_z_ =: f1_range_ ‘ f2_range_ @. select_range_

not_z_ =: -.

NB. Positional parameters
cocurrent < ’z’
lhs0 =: [NB. all left arguments
lhs1 =: 0&{@lhs0 NB. 1st left argument
lhs2 =: 1&{@lhs0 NB. 2nd left argument
lhs3 =: 2&{@lhs0 NB. 3rd left argument
lhs4 =: 3&{@lhs0 NB. 4rd left argument
lhs5 =: 4&{@lhs0 NB. 5th left argument
lhs6 =: 5&{@lhs0 NB. 6th left argument
lhs7 =: 6&{@lhs0 NB. 7th left argument
lhs8 =: 7&{@lhs0 NB. 8th left argument
lhs9 =: 8&{@lhs0 NB. 9th left argument
lhs10 =: 9&{@lhs0 NB. 10th left argument
rhs0 =:] NB. all right arguments
rhs1 =: 0&{@rhs0 NB. 1st right argument
rhs2 =: 1&{@rhs0 NB. 2nd right argument
rhs3 =: 2&{@rhs0 NB. 3rd right argument

A.2 Scripts from Chapter 4 185

rhs4 =: 3&{@rhs0 NB. 4th right argument
rhs5 =: 4&{@rhs0 NB. 5th right argument
rhs6 =: 5&{@rhs0 NB. 6th right argument
rhs7 =: 6&{@rhs0 NB. 7th right argument
rhs8 =: 7&{@rhs0 NB. 8th right argument
rhs9 =: 8&{@rhs0 NB. 9th right argument
rhs10 =: 9&{@rhs0 NB. 10th right argument
cocurrent < ’base’

A.2 Scripts from Chapter 4

Listing A.2 Network Calculus Functions, Script: netcalc.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.
NB. Chapter 4: Network Calculus
NB.
NB. Execute script with the command line:
NB. load ’netcalc.ijs’
NB.

NB. Prerequisites
load ’libs.ijs’

seq_z_ =: {˜ NB. sequence

NB. range of values of the interval [0,1]
i01 =: %(>./@:|)

NB. ’time’ index verbs
t_z_ =:]
s_z_ =: i.@>:@t
v_z_ =: }.@i.@t
u_z_ =: i.@>:@[

plus =: min"0 NB. point-wise minimum

NB. Wide-sense Increasing Functions
F0_z_ =: ([: 0&<rhs0)

186 A Scripts

NB. peak rate function
pr_z_ =: F0 * *

NB. affine function
af_z_ =: F0 * lhs2 + lhs1 * rhs0

NB. burst delay function
bd_z_ =: F0*_:*<

NB. rate latency function
rl_z_ =: lhs1 * max0 @ (rhs0-lhs2)

NB. step function
step_z_ =: 0:‘1:@.<

NB. stair function
stair_z_ =: F0 * ceil @ (lhs1 %˜ lhs2 + rhs0)

NB. subadditive closure
cocurrent < ’z’
stop =: 2&<.
conv =: min@(f, close"0@v + close"0@(t-v))
close =: (0: ‘ f ‘ conv @. stop)"0
cocurrent < ’base’

NB. Lindley equation
cocurrent < ’LND’
qlist =: rhs0
c =: >@lhs1
alist =: >@lhs2
ind =: <:@#@qlist

anext =: ind { alist
qprev =: {:@qlist
qnext =: max0 @ (anext + qprev - c)
cocurrent <’base’
lindley_z_ =: qlist_LND_,qnext_LND_

NB. Lindley equation (limited buffer)
cocurrent < ’LND2’
qlist =: rhs0
c =: >@lhs1
q =: >@lhs2
alist =: >@lhs3
ind =: <:@#@qlist

A.3 Scripts from Chapter 5 187

anext =: ind { alist
qprev =: {:@qlist
qnext =: min@(max0 @ anext + qprev - c,q)
cocurrent <’base’
lindley2_z_ =: qlist_LND2_,qnext_LND2_

NB. g-clipper
cocurrent < ’CLIPPER’
Blist =: rhs0
t =: #@Blist
s =: i.@t
Alist =: lhs0
ind =: <:@#@Blist
Bprev =: {:@Blist
Aprev =: ind { Alist
Anext =: >:@ind { Alist
f1 =: min@(Blist + g@(t-s))
f2 =: Bprev + A@t - A@(<:@t)
Bnext =: min@(f1,f2)
cocurrent <’base’
gclipper_z_ =: Blist_CLIPPER_,Bnext_CLIPPER_

A.3 Scripts from Chapter 5

Listing A.3 Statistics functions, script: stats.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.
NB. Chapter 5: Statistical Methods
NB. and Stochastic Processes

NB. Execute script with the command line:
NB. load ’stats.ijs’
NB.

NB. Prerequisites
load ’libs.ijs’

cocurrent < ’z’
mean =: [: (+/%#)] NB. arithmetic mean
mdev =: -mean NB. deviations from the mean

188 A Scripts

sqdev =: [: (*:@mdev)] NB. square of deviations
sumsq =: [: (+/@sqdev)] NB. sum of squares
dof =: [: <:@#] NB. degrees of freedom
var =: [: (sumsq % dof)] NB. variance
std =: [: (%: @ var)] NB. standard deviation

sp =: [: +/ *&mdev
ssp =: [: +/ @ (*&mdev)˜
cov =: sp % dof
cor =: cov % (*&std)
cocurrent < ’base’

NB. Autocovariance and Autocorrelation
cocurrent < ’ACF’
COV =: 0
COR =: 1
f1 =: }. ,: -@[}.] NB. compose data
f2 =: (f1-mean) NB. deviation from mean
n =: #@]
sp =: +/@(*/@f2)
cocurrent < ’base’
autocov_z_ =: sp_ACF_% n_ACF_
autocor_z_ =: sp_ACF_ % sumsq

NB. Long-range Dependence

NB. Calculate Hurst parameters
hurst_z_ =: >:@-@-: NB. time domain
hurst2_z_ =: -:@>: NB. frequency domain

NB. Variance time plot

cocurrent < ’VARM’
Xt =: rhs0
m =: lhs1

g1 =: (#@Xt)
g2 =: <.@(g1%m)
g3 =: g2*m
g4 =: (i.@g3) { Xt

f1 =: (-@m) +/\ g4
f2 =: f1%m
f3 =: var"1@f2

A.3 Scripts from Chapter 5 189

cocurrent < ’base’
varm_z_ =: f3_VARM_

cocurrent < ’DFT’
h =: rhs0
k =: lhs1
n =: #@h
j =: i.@n NB. j=1,2,..,n-1
eu =: ˆ@j. NB. Euler’s formula
f1 =: -@(+:@o.) @ (j*k%n) NB. -2pi jk/n
f2 =: h * (eu@f1) NB. h*exp(-2pi jk/n)
f3 =: +/@f2
cocurrent < ’z’
dft =: f3_DFT_ NB. in complex form
dftmp =: *.@dft NB. phase and magnitude
dftm =: {."1 @ dft NB. magnitude only
dftp =: {:"1 @ dft NB. phase only
cocurrent < ’base’

NB. RANDOM NUMBERS

cocurrent < ’z’
NB. uniform deviates
rand =: [: (?@$&2147483646)]
NB. runif =: 2147483647& (%˜) @ (?@$&2147483646)
runif =: 2147483647& (%˜) @ rand
cocurrent < ’base’

cocurrent < ’RNORM’
c1 =: [: _4.24264&+]
c2 =: [: 1.41412&*]
f1 =: [:6&*]
f2 =: runif@f1
g1 =: _6: +/\]
g2 =: c1@c2@g1@f2
cocurrent < ’base’
rnorm_z_ =: g2_RNORM_

NB. Arbitrary mean and std
rnorm2 =: +‘(*rn1)/ NB. rnorm2 10 5 5

NB. negative exponential
rexp_z_ =: (-@ˆ.)@runif NB. mean 1
exprand_z_ =: lhs1*[:rexp] NB. arbitrary mean

190 A Scripts

NB. Geometric
cocurrent <’RGEO’
p =: %@lhs1
n =: rhs1
rate =: %@p
NB. f1 =: rate (exprand) n
f1 =: rexp@n
f2 =: ˆ.@(1:-p)
f3 =: -@f1%f2
f4 =: ceil@>:@f3
cocurrent <’base’
rgeo_z_ =: f4_RGEO_

NB. roll dice
dice_z_ =: >:@?@]#&6

NB. Bernoulli (0/1)
rber_z_ =: >runif

NB. Pareto

cocurrent < ’PAR’
alpha =: lhs1
beta =: lhs2
n =: rhs1

f1 =: runif@n
f2 =: %@>:@-@f1
f3 =: %@alpha
f4 =: beta*(f2ˆf3)
cocurrent < ’base’
rpar_z_ =: f4_PAR_

mpar_z_ =: *%<:@]

Listing A.4 Functions for Stochastic Processes, Script: stochastic.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.
NB. Chapter 5: Statistical Methods
NB. and Stochastic Processes

NB. Execute script with the command line:

A.3 Scripts from Chapter 5 191

NB. load ’stochastic.ijs’
NB.

NB. Prerequisites
load ’libs.ijs’
load ’stats.ijs’

NB. Hurst parameter
hurst_z_ =: >:@-@-: NB. time domain
hurst2_z_ =: -:@>: NB. frequency domain

NB. Variance-time plot
cocurrent < ’VARM’
Xt =: rhs0
m =: lhs1

g1 =: (#@Xt)
g2 =: <.@(g1%m)
g3 =: g2*m
g4 =: (i.@g3) { Xt

f1 =: (-@m) +/\ g4
f2 =: f1%m
f3 =: var"1@f2

cocurrent < ’base’
varm_z_ =: f3_VARM_

NB. Discrete Fourier Transform
cocurrent < ’DFT’
h =: rhs0
k =: lhs1
n =: #@h
j =: i.@n NB. j=1,2,..,n-1
eu =: ˆ@j. NB. Euler’s formula
f1 =: -@(+:@o.) @ (j*k%n) NB. -2pi jk/n
f2 =: h * (eu@f1) NB. h*exp(-2pi jk/n)
f3 =: (+/@f2)%n
cocurrent < ’z’
dft1 =: f3_DFT_ NB. in complex form
dft2 =: *.@dft1 NB. phase and magnitude
dft =: {."1 @ dft2 NB. magnitude only
dftphase =: {:"1 @ dft2 NB. phase only
cocurrent < ’base’

192 A Scripts

NB. Autoregressive process
cocurrent <’AR’
et =: rhs1
coefs =: rhs2

g1 =: coefs ip et
cnext =: 0:,}:@coefs
f1 =: *@ coefs
f2 =: |.@f1
f3 =: +/\@f2
mask1 =: |.@(*@f3)
mask2 =: not@mask1
f5 =: <:@(+/@mask1)
f6 =: +/@mask2
f7 =: f5 {. et NB. -p to (i-1) elements
f8 =: (-@f6) {. et NB.(i+1) to n elements
xnext =: f7,g1,f8 NB. insert u(i)
cocurrent < ’base’
ar_z_ =: xnext_AR_,:cnext_AR_

NB. Moving average

sma_z_ =: +/\%[NB. simple MA

cocurrent < ’MA’
f1 =: (#@lhs0) +\ rhs0
f2 =: f1 ip [
cocurrent < ’base’
wma_z_ =: f2_MA_ NB. Weighted MA

NB. Fractional ARIMA process

NB. Coefficients
cocurrent < ’ARIMA’
d =: lhs1
n =: rhs0
f1 =: */\@ (i.@n-d) NB. -d, -d(1-d), -d(1-d)(2-d) ...
f2 =: 1:, -@f1 NB. 1, d, d(1-d), d(1-d)(2-d) ...
f3 =: !@i.@>:@n NB. 0!, 1!, 2! ...
f4 =: f2%f3
cocurrent < ’base’
fdcoefs_z_ =: f4_ARIMA_

NB. Fractional differencing function
cocurrent < ’ARIMA’

A.4 Scripts from Chapter 6 193

c =: lhs0
nc =: #@c
en =: [: >@{.]
xt =: [: >@{:]
xn =: xt {˜i.@ <:@nc
et =: {.@en
enext =: }.@en
g1 =: c*(et,xn)
g2 =: +/@g1
g3 =: enext;(g2,xt)
cocurrent < ’base’
fdiff_z_ =: g3_ARIMA_

NB. Fractional differencing wrapper script
cocurrent < ’z’
fd=: 4 : 0
’nc nx’ =: y.
d =: x.
c =: d fdcoefs nc
e1 =: rnorm nx
e2 =: rnorm nc
|. (i.nx) { >{: (c fdiffˆ:(nx) e1;e2)
)
cocurrent < ’base’

NB. Traffic simulation script
ts =: 4 : 0
’nf lf’ =. y.
d =. x.
a =. 0
for_j. i. nf
do. a =. a + 0> d fd 170&,lf
end.
a
)

A.4 Scripts from Chapter 6

Listing A.5 Traffic Modeling, Script: onoff.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.

194 A Scripts

NB. Chapter 6: Traffic Modeling
NB. and Simulation
NB.
NB. Execute script with command line:
NB. load ’onoff.ijs’
NB.

NB. Prerequisites
load ’libs.ijs’
load ’stats.ijs’

fdist_z_ =: [: +/"1 =/
Fdist_z_ =: [: +/"1 >/
pdf_z_ =: fdist@%[:#]

mm_z_ =: +/@:* NB. matrix multiply

phasediag_z_ =: }: ,: }.

cocurrent < ’BIN’
p =: lhs1
n =: rhs1
k =: i.@>:@n
f1 =: !@n
f2 =: (!@k) * (!@(n-k))
f3 =: f1%f2
f4 =: (pˆk) * (1:-p)ˆ(n-k)
f5 =: f3*f4
cocurrent < ’base’
bindist_z_ =: f5_BIN_

cocurrent < ’POIS’
x =: rhs0
lm =: lhs1
f1 =: lmˆx
f2 =: ˆ@(-@lm)
f3 =: !@x
f4 =: f1*f2%f3
cocurrent < ’base’
poisdist_z_ =: f4_POIS_

cocurrent <’EB’
s =: rhs0
x =: >@lhs1
p =: >@lhs2

A.4 Scripts from Chapter 6 195

f1 =: ˆ@(s */ x)
f2 =: f1 (*"1) p
f3 =: +/"1 @f2
f4 =: (ˆ.@f3) % s
cocurrent <’base’
eb_z_ =: f4_EB_

cocurrent < ’MD1’
rho =: lhs1 % rhs0
f1 =: >:@-@rho
f2 =: +:@f1
f3 =: (*:@rho) % f2
f4 =: lm + f3
cocurrent < ’base’
Emd1 =: f4_MD1_

cocurrent < ’z’
mjoin =: ,&(i.@#)
msel =: /:@mjoin
merg =: msel { ,
cocurrent < ’base’

rnd_z_ =: ceil @ (0.5&+@])

cocurrent < ’OOGEOGEO’
p01 =: lhs1
p10 =: lhs2
n =: rhs1
f1 =: %@p01 rgeo n
f2 =: %@p10 rgeo n
f3 =: f1,.f2
f4 =: f3 <@# 1:,0:
cocurrent < ’base’
oosrd_z_ =: ;@f4_OOGEOGEO_

cocurrent < ’OOPARGEO’
p01 =: lhs1
alpha =: lhs2
n =: rhs1
f1 =: %@p01 rgeo n
f2 =: (alpha,1:) (ceil@rpar) n
f3 =: f1,.f2
f4 =: f3 <@# 1:,0:
cocurrent < ’base’
oolrd_z_ =: ;@f4_OOPARGEO_

196 A Scripts

A.5 Scripts from Chapter 7

Listing A.6 Chaotic Maps, Script: cmap.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.
NB. Chapter 7: Chaotic Maps
NB.
NB. Execute script with the command line:
NB. load ’cmap.ijs’
NB.

NB. Prerequisites
load ’libs.ijs’

f_z_ =: 4&*@(* >:@-)
g_z_ =: lhs1 * [: f]

diff_z_ =: 4 : 0
’v0 N a’ =. x. [’x0’ =. rhs1 y.
’xn1 xn2’ =. a gˆ:(N) x0, (x0+v0)
xn1, | xn1-xn2
)

lyap_z_ =: 4 : 0
’v0 N a R’ =. x. [’x0’ =. y.
df =: rhs2"1 ((v0,N,a) diffˆ:(1 to R) x0)
(ln df%v0)%N
)

doall_z_ =: 3 : 0
L =: ’’
for_a. y.
do.
l =. mean (1e_6,20,a,100) lyap 0.1
L =. L,l

end.
L
)

cocurrent < ’TENTMAP’
u =: lhs1
x =: rhs1

A.5 Scripts from Chapter 7 197

f1 =: u*x
f2 =: u*(>:@-@x)
select =: 0.5 &le@x
xnext =: f1 ‘ f2 @. select
cocurrent < ’base’
tmap_z_ =: xnext_TENTMAP_

NB. Logistic maps

NB. Bernoulli shift
cocurrent < ’BMAP’
d =: lhs1
x =: rhs1

f1 =: x%d
f2 =: (x-d)%(1:-d)
xnext =: f1 ‘ f2 @. (d<x)
NB. xnext =: (f1*I0) + (f2*I1)
cocurrent < ’base’
bshift_z_ =: xnext_BMAP_

NB. Double Intermittency map

cocurrent < ’DIMAP’
d =: lhs1"1 NB. d
m =: lhs2"1 NB. m
e1 =: lhs3"1 NB. e1
e2 =: lhs4"1 NB. e2
x =: rhs0

c1 =: (>:@-@e1 - d) % d ˆ m
c2 =: -@(e2 - d) % >:@-@d ˆ m

select =: d<x

f1 =: e1 + x + c1 * x ˆ m
f2 =: -@e2 + x - c2 * >:@-@x ˆ m

I0 =: x le d
I1 =: d < x

xnext =: f1 ‘ f2 @. (d<x)
NB. xnext =: (I0*f1) + (I1*f2)
cmap =: xnext

198 A Scripts

cocurrent < ’z’

dimap =: xnext_DIMAP_

A.6 Scripts from Chapter 8

Listing A.7 ATM Quality of Service, Script: atm.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.
NB. Chapter 8: ATM Quality of Service
NB.
NB. Execute script with the command line:
NB. load ’atm.ijs’
NB.

NB. Prerequisites
load ’libs.ijs’

NB. Interpacket arrivals
ipa_z_ =: }. - }:

NB. Get conforming cells
conform_z_ =: >@rhs2

NB. Burst tolerance
cocurrent < ’BT’
Is =: lhs1
Ip =: lhs2
mbs =: rhs0
f1 =: <:@mbs * Is-Ip
cocurrent < ’base’
burst_z_ =: f1_BT_

NB. Generic Cell Rate Algorithm
NB. common functions to VSA and LB
cocurrent < ’GCRA’
I =: lhs1
L =: lhs2
Is =: lhs1
Ip =: lhs2

A.6 Scripts from Chapter 8 199

Ls =: lhs3
Lp =: lhs4
ta =: >@rhs1 NB. list of arrival times
clist =: >@rhs2 NB. conformance vector
ta1 =: {.@ta NB. 1st element of ta list
tn =: }.@ta NB. tail of ta list
cocurrent < ’base’

NB. Virtual Scheduling Algorithm
cocurrent < ’VSA’
TAT =: >@rhs3 NB. Theoretical Arrival Time
g1 =: TAT - L_GCRA_
g2 =: max @ (ta1_GCRA_, TAT) + I_GCRA_

conform =: ta1_GCRA_ < g1

f1 =: tn_GCRA_;(clist_GCRA_,0:);g2
f2 =: tn_GCRA_;(clist_GCRA_,1:);TAT
f3 =: f1 ‘ f2 @. conform
cocurrent < ’z’
vsa_z_ =: f3_VSA_

NB. Dual Virtual Scheduling Algorithm
cocurrent < ’DVSA’
TATs =: >@rhs3 NB. Theoretical Arrival Time
TATp =: >@rhs4 NB. Theoretical Arrival Time

g1 =: TATs - Ls_GCRA_
g2 =: TATp - Lp_GCRA_
g3 =: min @ (g1,g2)
conform =: ta1_GCRA_ < g3
TATsnext =: max @ (ta1_GCRA_, TATs) + Is_GCRA_
TATpnext =: max @ (ta1_GCRA_, TATp) + Ip_GCRA_

f1 =: tn_GCRA_;(clist_GCRA_,0:);TATsnext;TATpnext
f2 =: tn_GCRA_;(clist_GCRA_,1:);TATs;TATp
f3 =: f1 ‘ f2 @. conform
cocurrent < ’base’
NB.dualvsa_z_ =: f1_DVSA_ ‘ f2_DVSA_ @. conform_DVSA_
dvsa_z_ =: f3_DVSA_

NB. Leaky bucket
cocurrent < ’LB’
LCT =: >@rhs3
B =: >@rhs4

200 A Scripts

g1 =: B - (ta1_GCRA_ - LCT)
g2 =: max0@g1 + I_GCRA_
f1 =: tn_GCRA_;(clist_GCRA_,0:);ta1_GCRA_;g2
f2 =: tn_GCRA_;(clist_GCRA_,1:);LCT;B
conform =: g1 > L_GCRA_

f3 =: f1 ‘ f2 @. conform
cocurrent < ’base’
lb_z_ =: f3_LB_

NB. Dual Leaky Bucket
cocurrent < ’DLB’
LCT =: >@rhs3
Bs =: >@rhs4
Bp =: >@rhs5

g1 =: -/@ (Bs,ta1_GCRA_,LCT)
g2 =: -/@ (Bp,ta1_GCRA_,LCT)
NB.g1 =: Bs - (ta1_GCRA_-LCT)
NB.g2 =: Bp - (ta1_GCRA_-LCT)

g3 =: max0@g1 + Is_GCRA_
g4 =: max0@g2 + Ip_GCRA_
conform =: (g1 > Ls_GCRA_) +. g2 > Lp_GCRA_

f1 =: tn_GCRA_;(clist_GCRA_,0:);ta1_GCRA_;g3;g4
f2 =: tn_GCRA_;(clist_GCRA_,1:);LCT;Bs;Bp

f3 =: f1 ‘ f2 @. conform
cocurrent < ’base’
duallb_z_ =: f1_DLB_ ‘ f2_DLB_ @. conform_DLB_
dlb_z_ =: f3_DLB_
cocurrent < ’base’

A.7 Scripts from Chapter 9

Listing A.8 Internet Congestion Control, Script: congestion.ijs

NB. Network Performance Analysis
NB. by Alan Holt
NB.
NB. Chapter 9: Congestion Control
NB. Internet congestion control
NB.

A.7 Scripts from Chapter 9 201

NB. Execute script with the command line:
NB. load ’congestion.ijs’
NB.

NB. Prerequisites
load ’libs.ijs’

NB. Simple congestion control algorithm
cocurrent <’CWND’
c =: lhs1
alpha =: lhs2
beta =: lhs3
w =: rhs0
a =: +/@w
Icon =: a > c
Incon =: -.@Icon
f1 =: w + ((alpha * Incon) - (beta * Icon))
wnext =: 0.0001&max@(w + (alpha * Incon) - beta * Icon)
cocurrent <’base’
cwnd_z_ =: wnext_CWND_

NB. Binomial congestion control algorithms
cocurrent <’TCPC’
RTT =: lhs1
c =: lhs2
b =: lhs3
alpha =: lhs4
beta =: lhs5
k =: lhs6
l =: lhs7

t =: >@rhs1
w =: >@rhs2
q =: >@rhs3
ack =: >@rhs4
tx =: >@rhs5

acknext =: ceil@(t%RTT) NB. next acknowledgement
tnext =: >:@t NB. increment t
Inak =: ack=acknext NB. waiting for ack
Iack =: -.@Inak NB. ack received

txnext =: w%RTT
a =: +/@txnext NB. aggregate flow

202 A Scripts

backlog =: max0@(a + q - c) NB. calculate queue size
Incon =: backlog le b NB. no congestion
Icon =: -.@Incon NB. congestgion
qnext =: b <. backlog

wi =: ceil@(w + alpha % w ˆ k)
wd =: ceil@(w - beta * w ˆ l)

h1 =: (w * Inak) + wi * Iack
h2 =: (w * Inak) + wd * Iack
h3 =: (h1 * Incon) + h2 * Icon

wnext =: max1@h3 NB. ensure window at least 1 seg
h4 =: tnext; wnext ; qnext ; acknext ; txnext

cocurrent <’base’
tcpf_z_ =: h4_TCPC_

NB. TCP congestion control

cocurrent <’TCP’
flow =: lhs6
ssthresh =: >@rhs6

txnext =: w_TCPC_ % RTT_TCPC_

k =: -@(w_TCPC_ le ssthresh)
wi =: ceil@(w_TCPC_ + alpha_TCPC_ % w_TCPC_ ˆ k)
wd =: 1:

h1 =: (w_TCPC_ * Inak_TCPC_) + wi * Iack_TCPC_
h2 =: (w_TCPC_ * Inak_TCPC_) + wd * Iack_TCPC_
wnext =: (h1 * Incon_TCPC_) + h2 * Icon_TCPC_

g1 =: ceil@-:@ w_TCPC_
g2 =: max1@g1
g3 =: (ssthresh * Inak_TCPC_) + (g2 * Iack_TCPC_)
ssthnext =: (ssthresh * Incon_TCPC_) + (g3 * Icon_TCPC_)

h4 =: (flow%RTT_TCPC_) ,: txnext_TCPC_
txnext =: min"2@h4 NB. apply minimum cwnd

A.7 Scripts from Chapter 9 203

h5 =: tnext_TCPC_ ; wnext ; qnext_TCPC_
h6 =: acknext_TCPC_ ; txnext_TCPC_ ; ssthnext
h7 =: h5,h6

cocurrent <’base’
tcp_z_ =: h7_TCP_

Abbreviations

ABR: Available Bit Rate

ACF: Autocorrelation Function

AIAD: Additive Increase Additive Decrease

AIMD: Additive Increase Multiplicative Decrease

AR: Autoregressive

ARMA: Autoregressive Moving Average

ARIMA: Autoregressive Integrated Moving Average

ATM: Asyncronous Transmission Mode

BT: Burst Tolerance

CBR: Constant Bit Rate

CDVT: Cell Delay Variation Tolerance

DiffServ: Differentiated Services

DSCP: Differentiated Services Code Point

DCCP: Datagram Congestion Control Protocol

FCFS: First-Come First-Served

GCRA: Generic Cell Rate Algorithm

IntServ: Integrated Services

IP: Internet Protocol

ISP: Internet Service Provider

LBE: Less-than Best Effort

LCT: Last Conformance Time

LRD: Long-range Dependent

206 Abbreviations

MA: Moving Average

MBS: Maximum Burst Size

MCR: Minumum Cell Rate

MIAD: Multiplicative Increase Additive Decrease

MIMD: Multiplicative Increase Multiplicative Decrease

MPLS: MultiProtocol Label Switching

OSPF: Open Shortest-Path First

PCR: Peak Cell Rate

QoS: Quality of service

RIP: Routing Internet Protocol

RSPEC: Resource Specification

SCR: Sustained Cell Rate

SIC: Sensitive to Initial Conditions

TAT: Theoretical Arrival Time

TCP: Transmission Control Protocol

TSPEC: Traffic Specification

UBR: Unspecified Bit Rate

VBR: Variable Bit Rate

VoIP: Voice over IP

VSA: Virtual Scheduling Algorithm

References

1. R Adler, Raisa Feldman, and Murad Taqqu. A Practical Guide to Heavy Tails. Birkhäuser,
Boston, 1998. 5.1

2. V Alwayn. Advanced MPLS Design and Implementation. Cisco Press, Indianapolis,
2002. 1.3

3. D Bansal and H Balakrishman. Binomial congestion control algorithms. IEEE INFO-
COM 2001, 2001. 9.2

4. J S Bendat and A G Piersol. Random Data Analysis and Measurement Procedures. John
Wiley and Sons, New York, 1986.

5. J Beran. Statistics for Long-Memory Processes. Chapman and Hall, New York, 1994.
6. J Beran, R Sherman, M S Taqqu, and W Willinger. Long-range dependence in variable-

bit-rate video traffic. IEEE/ACM Transactions on Communications, 43(2/3/4), 1995. 1,
1.2, 5, 6

7. D. R. Boggs, J. C. Mogul, and C. A. Kent. Measured capacity of an ethernet: myths and
reality. In SIGCOMM ’88: Symposium proceedings on Communications architectures
and protocols, pages 222–234, New York, 1988. ACM Press. 1.2

8. G Box, W Hunter, and J Hunter. Statistics for Experimenters. Wiley and Sons, New York,
1978.

9. V G Cerf. U.S. Senate Committee on Commerce, science, and Transportation hearing on
“Network Neutrality”, 9 2006. http://commerce.senate.gov/pdf/cerf-020706.pdf. 1.1

10. Cheng-Shang Chang. Performance Guarantees in Communication Networks. Springer,
New York, 2000. 4.3.6, 4.4, 5.4

11. D Chiu and R Jain. Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Computer Networks and ISDN Systems, 17:1–14, 1989.

12. D Comer. Internetworking With TCP/IP Volume 1: Principles Protocols, and Architec-
ture. Prentice Hall, Englewood CLiffs, NJ, 5 edition, 2006. 1.1, 1.3

13. M E Corvella and A Bestavros. Self-similarity in world wide web traffic: Evidence and
possible causes. IEEE/ACM Transactions on Networking, 5(6), 12 1997. 1, 1.2, 6

14. L G Cuthbert and J C Sapanel. ATM the Broadband Telecommunications Solution. The
Institution of Electrical Engineers, London, 1996.

15. P E and Makoto Maejima. Self-similar Processes. Princeton, New Jersey, 2002.
16. A Erramilli, O Narayan, and W Willinger. Experimental queueing analysis with long-

range dependent packet traffic. IEEE/ACM Transactions Networking, 4(2):209–223,
1996. 1, 1.2, 5

208 References

17. A Erramilli, R Singh, and P. Pruthi. Modeling packet traffic with chaotic maps, 7 1994.
Royal Institute of Technology, ISRN KTH/IT/R-94/18–SE, Stockholm-Kista, Sweden.
7.1, 7.2

18. J Evers. Spammers now own email’s dirty reputation, 2006. http://www.silicon.com
/research/specialreports/thespamreport/0,39025001,39160781,00.htm. 1.1

19. T Ferrari, T Chown, N Simar, R Sabatino, S Venaas, and S Leinen. Experiments with
less than best effort (LBE) Quality of Service, 08 2002. http://www.dante.net/tf-ngn/
D9.9-lbe.pdf. 1.1

20. Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoid-
ance. IEEE/ACM Transations on Networking, 1(4):397–413, 8 1993. 1.3

21. J E Gentle. Random Number Generation and Monte Carlo Methods. Springer, New York,
1998.

22. N Giroux and S Ganti. Quality of Service in ATM Networks. Prentice Hall, Englewood
Cliffs, NJ, 1999. 1.1

23. A Gupta, D O Stahl, and A B Whinston. The economics of network management. Com-
munications of the ACM, 42(9), 9 1999. 1.1

24. M Handley, S Floyd, J Padhye, and J Widmer. TCP friendly rate control (TFRC): Protocol
specification. 1 2003. 9

25. Y Hayel, D Ros, and B Tuffin. Less-than-best-effort services, pricing and scheduling. In
INFOCOMM 2004, Albuquerque, 2004. 1.1

26. C W Helstrom. Probability and Stochastic Processes for Engineers. Macmillan, New
York, 2nd edition, 1984. 6.2, 6.2

27. A Holt. Improving the Performance of Wide Area Networks. PhD thesis, The Open
University, 1999.

28. A Holt. Long-range dependence and self-similarity in world-wide web proxy cache ref-
erences. IEE Proceeding Communications, 147(6):317–321, 2000. 1, 1.2

29. Van Jacobson. Congestion avoidance and control. Proc ACM SIGCOMM, pages 314–329,
8 1988. 1, 9

30. S Jin, G Liang, I Matta, and A Bestavros. A spectrum of TCP-friendly window-based
congestion control algorithms. IEEE/ACM Transaction on Networking, 11(3):341–355, 6
2003. 9.2

31. F Kelly. Effective bandwidths at multi-class queues. Queuing Systems, 28:5–16, 1992.
6.4

32. M Kendall and J K Ord. Time Series. Edward Arnold, London, 3rd edition, 1990.
33. L Kleinrock. Queuing Systems. John Wiley and Sons, New York, 1975. 4
34. E Kohler, M Handley, and S Floyd. Designing DCCP: Congestion control without relia-

bility, 2003. http://citeseer.ist.psu.edu/kohler03designing.html. 1
35. D Kouvatos. Performance Evaluation and Application of ATM Networks. Kluwer Acad-

emic Publishers, London, 2000.
36. Jean-Yves le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic

Queuing Systems of the Internet. Springer, New York, 2001. 4.3.6, 4.6
37. W E Leland, M S Taqqu, W Willinger, and D Wilson. On the self-similar nature of

ethernet traffic. IEEE/ACM Transactions on Networking, 2(1), 2 1994. 1, 6
38. J Li, A Wolisz, and R Popescu-Zeletin. Modelling and simulation of fractional ARIMA

processes based on importance sampling. In SAC ’98: Proceedings of the 1998 ACM
Symposium on Applied Computing, pages 453–455, New York, 1998. ACM Press. 5.3.3

39. D Lindley. The theory of queues with a single server. Proc. Camb. Phil. Soc.,
48(1052):277–289, 1952. 1.4, 4.4, 5.4, 9.2

40. M Loukides. System Performance Testing. O’Reilly and & Associates, Sepastopol, Cali-
fornia, 1991.

References 209

41. Paul A Lynn and Wolfgang Fuerst. Introductory Digital Signal Processing with Computer
Applications. John Wiley & Sons, New York, USA, 1994. 3

42. G Maedel. Mathematics for Radio and Communication, Book II Trigonometry, Alegbra,
Complex Numbers with Answers. Maedel Publishing House, New York, 1939.

43. S Makridakis, S Wheelwright, and R Hyndman. Forecasting Methods and Applications.
John Wiley and Sons, New York, 3rd edition, 1998.

44. M G Marsh. Policy Routing using Linux. Sams, USA, 2001. 1.3
45. D McDysan and D Spohn. ATM Theory and Applications. McGraw-Hill, New York,

1999.
46. L W McKnight and J P Bailey. Internet ecomomics: When constituencies collide in

cyberspace. IEEE Internet Computing, 6(1):30–37, 11 1997. 1.1
47. R M Metcalfe and D R Boggs. Ethernet: Distributed packet switching for local computer

networks. Communications of the ACM, 19(5):395–404, 7 1976. 1.2
48. W B Norton. Internet service providers and peering. In Proceedings of NANOG 19,

Albuquerque, New Mexico, June 2000. 1.1
49. W B Norton. Art of peering: The peering playbook, 2006. http://arneill-py.sacramento

.ca.us/ipv6mh/playbook.pdf. 1.1
50. Consumers’ Institute of New Zealand. Internet neutrality? http://www.consumer.org.nz/

newsitem.asp?docid=2624&category=News&topic=ISPs\able\to\slow\down\VoIP\
services, 6 2006. 1.1

51. D Passmore. Ethernet: Not just for LANs anymore, 07 2000. http://www.burtongroup.
com/promo/columns/column.asp?articleid=80&employeeid=56. 1.2

52. H Peitgen, H Jurgens, D Saupe, E Maletsky, T Pericante, and L Yunker. Fractals for the
Classroom, Part One. Springer-Verlag, New York, 1992. 5.1, 7.1

53. J M Pitts and J A Schormans. Introduction to IP and ATM Design and Performance. John
Wiley and Sons, Chichester, 1996.

54. W Press, W Vettering, S Taukolsky, and B Flannery. Numerical Recipes in C. Cambridge
Press, Cambridge, 2002. 5.1

55. P Pruthi and A Erramilli. Heavy-tailed on/off source behavior and self-similarity. vol-
ume 1, pages 445–450, 6 1995. 6.5

56. K Ramakrishnan and R Jain. A binary feedback scheme for congestion avoidance in
computer networks. ACM, Transaction on Computer Systems, 8(2):158–181, 5 1990. 9.2

57. H Rich. J for C programmers. http://www.jsoftware.com/jwiki/Doc/Books, 10 2004.
58. R Y Rubinstein. Simulation and the Monte Carlo Methods. John Wiley and Sons, New

York, 1981.
59. Lionel Salem, Frederic, and Coralie Salam. The Most Beautiful Mathematical Formulas.

John Wiley & Sons, New York, USA, 1992. 3.2.3
60. Christian Sandvig. Network neutrality is the new common carrier. The Journal of Policy,

Regulation, and Strategy, 7 2006. 1.1
61. M Schuyler. Measuring network traffic, 2001. http://www.solarwinds.net/Awards/

View.htm. 1.2
62. Claude E Shannon and Warren Weaver. The Mathematical Theory of Communication.

University of Illinois Press, Chicago, USA, 1963. 3.2.2, 3.2.4
63. R Sircant. The Mathematics of Internet Congestion Control. Birkhauser, Boston, 2004.

9.1, 9.3
64. W R Stevens. TCP/IP Illustrated Volume 1, The Protocols. Addison-Wesley, Boston,

1994.
65. C Stoll. The Cukcoo’s Egg. Bodley Head, UK, 1989. 1.1
66. A S Tanenbaum. Computer Networks. Prentice-Hall, Englewood Cliffs, NJ, 1989. 1.2

210 References

67. R Taylor. The great firewall of China. BBC News, 6 2006. http://news.bbc.co.uk/2/hi/
programmes/click online/4587622.stm. 1.1

68. D Teare. CCDA Self Study: Designing for Cisco Internetwork Solutions. Ciscopress,
2003. 1.2, 1.3

69. T M Thomas. OSPF Network Design Solution. Ciscopress, Indianapolis, 1998. 1.3
70. N Thomson. J for engineers and computing professionals. IEE Computing & Control

Engineering Journal, 12(5):212–216, 10 2001.
71. N Thomson. J: The Natural Language for Analytical Computing. Research Studies Press,

Baldock Hertfordshire, 2001. 5.1
72. T. Tuan and K. Park. Congestion control for self-similar network traffic. Technical Report

CSD-TR-98014, 1998.
73. S Vegesna. IP Quality of Service. Ciscopress, Indianapolis, 2001. 1.1, 1.3
74. M Ward. More than 95% of e-mail is junk, 2006. http://news.bbc.co.uk/2/hi/technology

/5219554.stm. 1.1
75. K Xu and N Ansari. Stability and fairness of rate estimation-based AIAD congestion

control in TCP. IEEE Communications Letters, 9(4):378–380, 4 2004. 9

Index

z-transforms, 33

Trigonometrical functions, 43

Absorbing element ε, 58
Additive Increase Additive Decrease

(AIAD), 167
Additive Increase Multiplicative Decrease

(AIMD), 167
Adverbs

insert /, 27, 36
passive ˜, 28, 38
prefix \, 27
reflexive ˜, 28
suffix \., 27

Algebra
associativity, 55
commutivity, 55
distributivity, 55

Aloha, 6
pure, 7
slotted, 6, 7
throughput, 6

arithmetic mean, 36
Arrays, 28
Arrival curves, 66
ATM

ABR, 147
BT, 155, 158
CBR, 147, 152
CDVT, 147, 152
Cell jitter, 152
GCRA, 148
Leaky bucket, 148

MCR, 147
PCR, 147
SCR, 147
UBR, 147, 148
VBR, 147
VSA, 148

Autocorrelation, 88
Autocovariance, 88
Autoregressive integrated moving average

(ARIMA), 96
Autoregressive processes, 96
Autorgressive moving average (ARMA), 96
Available Bit Rate (ABR), 147

Bernoulli trials, 85, 110
Best-effort, 3, 148
Bifurcation, 129
Binomial congestion control algorithms, 166

AIAD, 167
AIMD, 167
IIAD, 168
MIAD, 168
MIMD, 167
SQRT, 168

Binomial Distribution, 110
Binomial distribution, 110
Butterfly effect, 129

Carrier sense multiple access (CSMA), 7
1-persistent, 7
nonpersistent, 7

Cell Delay Variaton Tolerance (CDVT), 147
Channel access control (CAC), 115
Chaotic maps, 1, 125

212 Index

Bernoulli shift, 135, 136
double intermittency, 135, 140
state space, 125

Commutative semifield, 54
Complex numbers, 20
Concatenation, 71
Concave function, 64
Congestion, 3
Congestion control, 163

binomial algorithms, 2
Conjunctions, 37

agenda @., 40, 136
atop @, 6, 26, 34, 38, 39, 45
at @:, 38
bond &, 26, 34, 37
compose &, 37
rank ¨, 29

Constant Bit Rate (CBR), 52, 68, 147
Convex function, 64
Convolution, 54

min-plus, 54, 71
Correlation, 89
Covariance, 89

Datagram Congestion Control Protocol
(DCCP), 1, 163

Differentiated services, 11
Codepoint, 11
TSPEC, 11

Dioid, 54
Dual leaky bucket algorithm, 153
Dual virtual scheduling algorithm, 153
Dyadic, 22
Dynamical systems

maps, 125
nonlinear, 125

Effective bandwidth, 2, 78, 109, 115, 118,
119

Entropy, 44
Equivalent capacity, 2, 78
Ethernet, 6
Euler’s formula, 43
Explicit programming, 48

arguments x. and y., 49

Fork, 34, 36
Fourier transform, 92
Fractional ARIMA (FARIMA), 1, 96, 102

Fractional Brownian motion, 1
Functions

ln, 37
log2, 37
log10, 37
af, 60
autocor, 89
autocov, 89
bd, 60
burst, 148
ceil, 51
close, 63
cor, 89
cov, 89
cwnd, 165
dftmp, 93
dftm, 93
dftp, 93
dft, 93
dlb, 155, 160
dof, 46, 87
dvsa, 154
et, 58
eu, 44
exprand, 85
e, 58
fdcoefs, 101
fdiff, 101
fd, 102
gclipper, 70
hurst2, 104
hurst, 103
ip, 55, 97
lb, 151
lindley, 67, 107
max0, 51
max, 51
mdev, 87
mean, 87
min, 51
oolrdc, 157
oolrd, 122
oosrdc, 156
oosrd, 120
phasediag, 124
pr, 59
rand, 84
rber, 110
rexp, 85

Index 213

rgeo, 86
rl, 61
rnorm, 85
rpar, 87
rsort, 106
runif, 84
sma, 99
sqdev, 46, 87
stair, 61
std, 46, 87
step, 34, 61
sumsq, 46, 87
s, 52
tcpf, 171
tcp, 179
t, 52
ustep, 34
u, 74
var2, 46
varm, 92
var, 87
vsa, 149
wma, 100
w, 64
lyap, 134

Gaussian (Normal) distribution, 84
Generic Cell Rate Algorithm (GCRA), 148
Geometric distribution, 85, 109
Gerund ‘, 40, 136
Good function, 75

Heavy-tailed, 122
Hook, 33, 35
Hurst parameter, 102

Identity element e, 58
Infinity , 22
Inner product, 55

min-plus, 55
Integrated services, 11

RSPEC, 11
RSVP, 11
TSPEC, 11

Internet, 3
flat-rate pricing, 3

Internet Service Provider (ISP), 4
Peering, 4
transit provider, 4

Inverse Increase Additive Decrease (IIAD),
168

Leaky bucket Algorithm, 53
Leaky bucket algorithm, 2, 148, 150

Dual, 153, 160
J function dlb, 155
J function lb, 151
Last Comformance Time (LCT), 150

Leaky-bucket Algorithm, 68
Lindley equation, 12, 67, 106, 119, 122, 145,

168
Load balancing, 10
Locale, 47

base, 48
cocurrent command, 47
z, 48

Logistic map, 125
Long-range dependence, 1, 83, 106, 120,

125, 140
Lyapunov exponent, 125, 133

M/M/1 queue, 12
Markov chain, 112
Markov model, 106
Markovian process, 137
Maximum Burst Size (MBS), 147
MBS, 147
Min-plus Algebra, 1, 51, 54, 59

convolution, 54, 56, 71
deconvolution �, 74
pointwise minimum, 56

Minimum Cell Rate (MCR), 147
Monadic, 22
Moving average processes, 99
Multiplicative Increase Additive Decrease

(MIAD), 168
Multiplicative Increase Multiplicative

Decrease (MIMD), 167
Multiprotocol Label Switching (MPLS), 11

Network calculus, 1, 12, 51
Network neutrality, 3
Normal distribution, 84

On/off traffic models, 2
continuous, 2, 156
discrete, 109, 120
heavytailed, 1

214 Index

simulating, 125

Pareto distribution, 86, 109
Peak Cell Rate (PCR), 147
Performance bounds, 72

backlog, 72
delay, 72
output, 74

Pointwise minimum, 56
Poisson

distribution, 11, 112
process, 106

Policy routing, 10
Power spectrum, 93

Quality of Service (QoS), 3, 115
best-effort), 3
Less than best-effort (LBE), 3

Queuing theory, 51

Random number generators, 83
exponential, 85
geometric, 85
normal, 84
pareto, 86
uniform, 84

Rank, 28
attribute, 28, 40
inheritance, 39

Scripts, 49
Self-similarity, 1, 83, 106, 120, 125, 140
Sensitivity to initial conditions (SIC), 125,

129
Service curves, 71
Shape, 28
Short-range dependent, 107
Sliding window flow control, 74
Square Root Increase Square Root Decrease

(SQRT), 168
Standard deviation, 46
Startup script, 183
Stochastic processes, 95
Subadditive, 62, 64, 75, 77
Subadditive closure, 63, 76, 77
Sustained Cell Rate (SCR), 147

Tacit programming, 13, 35
Traffic management, 3

Traffic shaping, 68
g-clipper, 69
g-regulator, 69

Transmission Control Protocol (TCP), 1, 163
BIC, 176
congestion avoidance, 177
flow-control window, 179
Hybla, 176
NewReno, 176
Reno, 176
SACK, 176
slow-start, 176
Tahoe, 176
Vegas, 176
Westwood, 176

Uniform distribution, 84
Unspecified Bit Rate (UBR), 147, 148
User Datagram Protocol (UDP), 163
Utilisation, 5

Valance, 22
Variance, 45
Variance time plot, 90
Verbs

addition +, 35
box <, 26
cocurrent cocurrent, 47
complex j., 22, 43
cos cos, 43
curtail }:, 24
decrement <:, 33, 45, 46
decrement <:, 14
divide %, 7, 33, 36, 45
divide %, 22
division %, 23
double +:, 7, 35
drop }., 24
equals =, 34
exponential ˆ, 6, 23
from {, 24
head {., 24
increment >:, 7
increment >:, 43
integers i., 20, 22, 29
integers i:, 20
laminate ,:, 24
left [, 24
less-than <, 34

Index 215

ln ˆ., 37
logarithm ˆ., 37
matrix divide %., 92
multiply *, 6, 35, 36, 43
negation -, 34, 36
negaton -, 6
open >, 26
or +., 34
power ˆ, 23
ravel ,, 25
raze ,., 24
reciprocal %, 23, 35, 36
right], 24
roll ?, 83
shape-of $, 30
shape $, 29, 30
sin sin, 43
square root %:, 35, 46
square *:, 35

subtraction -, 36, 38
subtract -, 35
tail {:, 24
tally #, 31, 36, 45, 46

Virtual Scheduling Algorithm (VSA), 2
Virtual scheduling algorithm (VSA), 148

Dual VSA, 153
J function dvsa, 154
J function vsa, 149
Theoretical arrival time (TAT), 148

Voice-over IP (VoIP), 4

White noise, 95
Wide-sense Increasing functions, 54, 59

Affine γr,b, 60
Burst delay, 60
Peak rate λR(t), 59, 63, 66
Rate-latency βR,T , 61, 71
Stair uT,τ , 61, 74, 76
Step vT , 61

